Международная Академия Наук International Academy of Sciences Центра Ноосферной Защиты Centre Noospheric of Defence Химическая Лаборатория Chemical Laboratory

Кафедра "ХИМИЯ" Сибирского Государственного университета путей сообщения

С. А. КУТОЛИН

ФИЗИКО-ОРГАНИЧЕСКАЯ ХИМИЯ

КОМПЬЮТЕРНЫЙ СИНЭРГИЗМ

(одоранты, лекарственные вещества, канцерогены, канцеролиты)

Chem.Lab.NCD Новосибирск 2007

УДК533.72+539.107.2+541 ББК24.4 К141

Физико-органическая химия - компьютерный синэргизм (одоранты, лекарст-венные вещества, канцерогены, канцеролиты) .

Новосибирск: Изд.-во Chem.Lab.NCD, 2007. - 96С.

ISBN-0-8247-2497-7

В работе рассматривается физико-органическая химия на примере компьютерного моделирования и механизмов действия одорантов, лекарственных веществ, канцерогенов, канцеролитов. Существенным результатом такого моделирования оказался эффект иерархии аналогии или прямого подобия — синэргизма в описании действия одорантов и лекарственных веществ, канцерогенов, канцеролитов. Обсуждается рефрактометрический механизм взаимодействия одорантов, рецепторов запаха, а компьютерный синэргизм позволяет уяснить механизм классификации и интенсивности запахов.

Автор работы: Кутолин Сергей Алексеевич - профессор, доктор химических наук, академик РАТ, МАН ЦНЗ, 45 лет научно - педагогической работы.

Автор и соавтор монографий и учебников в области:

материаловедения - "Материаловедение редкоземельных соединений", 1981; "Физическая химия цветного стекла", 1988; "Кибернетические модели в материаловедении", 1996; "Неорганическое материаловедение", 1997; "Компьютерные модели конструкционных свойств сталей", 1998;

учебно - педагогических материалов - "Концепции современного естествознания", 1997; "Общая и неорганическая химия",1998; "Химия",2000; "Введение в теорию технологических процессов",2001; "Элементарный курс физической химии",2002; "Краткий курс коллоидной химии", 2003; "Химия и микробиология воды", 2004;

в области рефлексии: "Философия интеллекта реального идеализма", 1996; "Мир как Труд и рефлексия", 2001; "Стяжание Духа, как интуиция менталитета", 2002.

К 205634 - 141 без объявления

003(063)-06

© Кутолин С.А., 2007

предисловие

Профессор Кутолин С.А. всегда удивлял своих коллег, как сторонников, так и противников своих идей неортодоксальнос-тью взглядов на проблемные ситуации, возникающие в науке, философких учениях, методике обучения, искусстве и литера-туре.

Для тех же, кто знал в какой научно - философской среде происходило формирование взглядов автора настоящей работы, вовсе не удивительна широта позиции и разнообразие его подходов к решению проблемных ситуаций в науке, технике, образовании и искусстве. И философ И.С. Ладенко, и великий физико - химик Н.И.Кобозев, и академик физики М.И.Корсунский. и физико - химик, физик, био физико - химик проф. С.С. Васильев, и, наконец, применительно именно к данной работе, бывший директор и создатель Института "Физико - органической химии" БАН, ак. Ерофеев Б.В. в резуль-тате своего неформального общения с С.А.Кутолиным оказали достаточно сильное влияние на формирование идей автора, владеющего многообразными приемами экспериментальной и теоретической химии, квантовой механики, спектроскопии, теории информации, теоретической физики, физико - органической химии и методами моделирования явлений и процессов в том числе и физико органической химии.

Отдавая дань должного максимам, влияющим на формиро-вание и решение проблемных ситуаций в науке, технике и искусстве, автор в качестве таковой общей формулы движения от незнания к знанию понимает - "Мир как труд и рефлексию", рассматривая единство труда и индивидуальной мыследея-тельности, т.е. рефлексии, как феномен, который в иерархии аналогии или прямого подобия (синэргизм) явлений биосферы приводит автора к химическому дизайну, т.е. единому проекту элементов биологии, химии, физики и математики. Нужно сказать, что это утверждение вовсе не голословно - за грани-цей широко известна и пользуется большим авторитетом книга автора под редакцией John J. McKetta, в течение длительного срока возглавлявшего департамент материаловедения в США, -"Encyclopedia of Chemical Processing and Design.v.47,1994, p.528 : Publisher: Marcel Dekker ISBN: 0824724976 ", John J. McKetta, S. A. Kutolin(http://www.amazon.co.uk/exec/obidos /ASIN/0824724976/gid=1130022385/sr=1-1/ref=sr 1 8 1/202-

94895210423010).

Материал работы злободневен, касаясь и работников сель-ского хозяйства, и медиков, и экологов, и биофизиков, и психологов. В нем есть место и рассмотрению теоретических вопросов: "обонятельной луковицы, обонятельного тракта, участия базальных ядер переднего мозга..." и т. д., и т.п., т.е. биофизики, биохимии рецепторов, хеморецепции обоняния, а потому имеет прямое отношение к любым формам одорантов и их аналогии в действии с лекарственными веществами, канцерогенами, канцеролитами лежащих в основе парфю-мерии и психотропных веществ на основе запахов, что переводит проблемную ситуацию химии молекулярной рецепции в область актов сознательного и бессознательного, к химии анализа которых призывал в своих работах знаменитый философ, психолог и психиатр Карл Густав Юнг.

Недостаточная изученность запахов как биологического явления тем не менее позволяет автору методом синергизма и феноменологических приемов в том числе и компьютерного моделирования вскрыть неформальную сущность явления восприятия запахов, обнаружив квантово - флюктуационную природу этого явления и аналогию кинематики движения живых организмов, кинетики распространения одорантов, специфичность их физико - органической ориентации в биологическом материале рецепторов.

Читатель может наглядно убедиться в широком взаимном проникновении естественных наук, познакомится с методи-ческими приемами и общими идеями, лежащими в области, уже теперь проявляющейся в новых технических достижениях.

Член - корр. IAS of NCD Г.М.Писиченко

От автора

Компьютерный синергизм физико - органической химии предмет настоящей работы. Автор хотел бы выражаться просто, ну, одним словом так просто, как у героев Я.Гашека в его романе "Бравый солдат Швейк", сначала сказать : "Дыхните! ", а уже затем перечислять: "...контушовка, зубровка, перцовка.....". Но вот растения, насекомые, животные да и сами люди чувствуют и переживают запахи, а это значит, что вся биосфера, находятся под влиянием одорантов, т.е. душистых веществ, хотя мы не так уж и много знаем о механизмах физиологической нервной деятельности, психофизике, квантовой химии, теории информации в живых организмах, а они, разумеются, не ведают о всяких там дисциплинах, с помощью которых ученые пытаются понять иерархию аналогии, т.е.синергизм, связывающую феномен одорантов, лекарственные вещества, канцерогены, канцеро-литы.

Когда человек слеп, глух, нем, - то эти физические недостатки настолько существенны для объективной деятельности, что квалифицируются формами инвалидности. Если же человек лишен, например, вкусовых или обонятельных ощущений, то понятие инвалидности проблематично.. Другое дело мир растений, насекомых и животных, где отсутствие подобных ощущений может быть просто фатально и не только для отдельных объектов, но и для вида в целом. У помотография

Хроматография, масс - спектрометрия, ЭПР, ЯМР, ЯКР и другие мощные физические методы далеко не в полной мере могут служить необходимыми и достаточными приемами идентификации тех же одорантов, их смесей, т.е. материалов, которые в своем многообразии повидимому более однозначно распознаются растениями, насекомыми, животными.

Вот почему феноменология физико - органической химии молекулярной рецепции одорантов, лекарственных веществ, кацерогенов есть предмет компьютерного синэргизма. "Хаос и порядок—наиболее общие категории действительности: они присущи всем явлениям природы—от атомно - молекулярных до психических".-Н.И.Кобозев,1948

Молекулярная рецепция, законы биологической кинематики и распространение одорантов 1.Молекулярная рецепция одорантов 2.Векторно - броуновская кинематика живых организмов, кинетика одорантов и механизм рецепции

1. Молекулярная рецепция одорантов

Душистые вещества (одоранты) воспринимаются избирательными нервными клетками или системой клеток, называемых биологическими молекулярными рецепторами. В них происхо-дит трансформация обонятельного, вкусового сигнала в нерв-ные импульсы. И хотя природа такого преобразования не ясна, но уже сам принцип "от клетки к клетке" позволяет предпо-ложить существование и другого не менее фундаментального принципа (по аналогии и с тем, что "подобное растворяется в подобном"), принципа синэргизма, который можно формули-ровать так применительно к кинетике распространения одо-рантов и движению живых оранизмов, как взаимозависимой системы: "движение живых организмов осуществляется в форме импульсов, а потому и усвоение внешнего сигнала рецепторами преобразуется в нервные импульсы", т.е. "усвоение информации молекулярными рецепторами осущест-вляется от импульса к импульсу".

Антенны молекулярных рецепторов представляют собой клеточные выросты плазматических мембран, содержащие белки для данного вида рецепции, т.е. специфичны по своему назначению, и состоят их микровилл и являются результатмо дифференцировки ресничек, жгутиков и их производных., в

образования которых входят фибриллярные белки, жгутики которых построены по принципу: 9 · 9 + 2 или 9 · 2 + 0, т.е. име-ют по девять пар фибрилл на периферии и одну или ноль в центре.

Восприятие импульсов от одорантов и преобразование их рецепторами в нервные импульсы не происходит, естественно, одновременно, но можно предположить, что такие импульсы в своей начальной стадии последовательны, первым импульсом следует второй т.е. за в последовательности: 1, 1. Тогда по отношению к этой паре импульсов следующая пара будет точно такой же, но предыдущая будет восприниматься рецеп-тором как 1+1=2. И потому каждый следующий импульс, например, равный 3 будет суммой предыдущего и последу-ющего импульсов, т.е. 3=1+2. Практически это означает. что импульсы воспринимаются молекулярными рецепторами по некоторому "закону", ряд импульсов которого совпадает с рядом последовательности чисел Фибоначии, столь существенными в теории поиска¹. Если же молекулярные рецепторы строго избирательно настроены на восприятие и преобразование импульсов одорантов в нервные импульсы в форме ряда последовательности чисел Фибоначчи, то такой поиск позво-ляет говорить: о стратегии поиска (L) и результате стратегии поиска (Р) биологическим объектом одоранта. Поскольку, нап-ример, v насекомых, три аспекта жизнедеятельности: питание, спаривание, кладка яиц связаны с обонятельной рецепцией молекул одорантов, то определить результат стратегии поиска (Р) молекулярными рецепторами можно, если понять какова стратегия поиска (L) насекомых, которые ориентируются по "языку запаха", выделяемых ими специальными одорантами — феромонами. Общественные насекомые — муравьи выделяют феромоны сигналов тревоги, пути к запасам пищи, самки тутового

¹.Воробьев Н.Н.Числа Фибоначи. М.: Наука, 1978. 140с.

шелкопряда Bombix mori половой одорант — аттрактант бомбикол. Выскокая чувствительность молекулярных рецепторов обоняния показывает (для возбуждения самца Bombix mori достаточно всего 2500 молекул бомбикола, т.е. 10^{-18} г в 1см³ растворителя), что запах переносится молекулами. Пороговая концентрация дупистых веществ, воспринимаемая человеком, составляет для скатола $4 \cdot 10^{-7}$, для тринитробутилтолуола $5 \cdot 10^{-9}$ мг/л. Ориентация по запаху установлена для многих организмов — млекопитающих ,рыб, собак и т.д.² Определив стратегию поиска (L), как форму движения живых организмов и поняв принцип молекуляроной рецепции запаха (α), т.е. превращения импульсов феромона в нервные импуль-сы живого организма, можно полагать, что результат стра-тегии поиска (P) будет функцией этих величин P= F(L, α).

Резонансная, вибрационная или квантовая теория рецепции запаха потому и оказалась не состоятельной, рассматривая резонанс атомных колебаний молекул одоранта и молекулярных структур рецептора, что не обращала внимание на импульсный характер поступления одоранта к рецептору и импульсный характер трансформации молекулярным рецептором нервного сигнала. Следуя принципу, открытому еще Ж.Фабром, о том, что "насекомые это живые автоматы, заведенные на всю жизнь для механического выполнения определенного цикла операций", можно утверждать, что принцип " от клетки к клетке"— " от импульса к импульсу" и есть принцип преобразования импульса молекулярного феромона в нервный импульс рецептора. Но если таковую закономерность принять в форме ряда чисел Фибоначчи, то в соответствии с теорией поиска работы "автоматов — насекомых" результат стратегии поиска (Р) есть стратегия поиска (L), ограниченная условиями скорости передачи импульсов последующего к предыдущему в ряду чисел Фибоначчи: 1,1,

².Райт Н.Х.Наука о запахах. М.:Мир, 1996.224с.

2,5,8,13,21,34,55..., где α приобретает смысл при числе импульсов больше 3:

$$\alpha = \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \dots$$

А по теории автоматов(<u>сноска 1</u>) результат стратегии поиска есть величина (P), равная:

$$P = \frac{L}{\infty} (1.1)$$

Тем самым, если величина α есть "форма ограничения" результата стратегии поиска принципа "от импульса к мипульсу", а по существу величина, равная "золотому сечению", то величина L как стратегия поиска должна описывать кинематику движения живых организмов, используя принцип "от импульса к импульсу", в рамках которого, в том числе и насекомые, как автоматы, заведенные для выполжизнедеятельности(питание, нения трех аспектов спаривание, откладка яиц). Такая кинематика должна с одной стороны, само учитывать, распространение малой феромона например, аттрактанта, весьма концентрации в единице объема пространства движения с учетом ориентации живых организ-мов, а с другой, саму импульсную кинематику движения живого организма, ориентация которого задается молеку-лярной структурой рецептора, улавливающего по принципу "от импульса к импульсу" импульсы перемещения аттрактанта в пространстве и превращения его в нервный импульс - реакцию.

Тем самым кинетика распространения феромона, кинематика движения живого организма и кинематика импульсной тран-сформации молекул феромона в нервный импульс представ-ляется примером своеобразного гомеостазиса — равновесия в системе феромон — живой организм — молекулярный рецеп-тор.И этот гомеостазис есть форма синэргетики.

2.Векторно - броуновская кинематика живых организмов,

кинетика одорантов и механизм рецепции

Когда читаешь интересные и даже захватывающие результаты исследований Н.Х.Райта в его книге "Наука о запахах", где приводятся экспериментальные данные движения путей пло-довых мушек, пытающихся найти источник запаха, и путь плодовых мушек против ветра воздуха, равномерно насыщенного запахом, убеждаешься в том, что исследователю достаточно ярко удалось показать две граничные формы стратегии поиска плодовыми мушками источника запаха и разделить векторное, направленное движение живых объектов и хаотичное их перемещение в стратегии поиска источника запаха(L).

Рис. 1.1. Полет плодовых мушек в поисках источника запаха (хаотичное, броуновское движение) по Райту с.39

Рис. 1.2. Полет плодовых мушек в потоке воздуха, равномерно насыщенного запахом (векторное, направленное движение).по Райту,с.38

Увы, автору не были известны работы проф. МГУ Кобозева Н.И., который еще в 1948г. в биологическом отделе Бюллетеня МОИП опубликовал свою работу, посвященную теории векторно - броуновских процессов и законам

биологической кинематики³, где как раз и описал "явление броуновской стратегии поиска" векторно живых организмов, пере-мещающихся по принципу "от импульса к Любопытно импульсу". отметить, ЧТО председатель Математического Комитета, основатель Американского журнала "Математи-ческая Биофизика" проф. Рашевский Н.П. в своих письмах дискутировал этот вопрос с проф.Кобозевым. По крайней мере такое письмо от 9.10.1958г. имеется в архиве ученого. Уже после смерти ученого З.А.Терентьева опубликовала серию работ по кинематике движения живых организмов, где рассматривала применимость теории броуновского движения живых организмов и средней длительности пробега как собственного параметра этого движения, дала аргумен-тированный метод определения степени упорядоченности движения живых организмов (п) и попыталась оценить коли-чество информации, усваиваемой живыми организмами ИЗ окружающей среды⁴.

Полученные величины объемов выборки n (число пар соседних приращений), значения коэффициентов корреляции г, вычис-ленных для них стандартным методом и, для проверки гипотезы, об отсутствии корреляционной связи, соответству-ют критическим значениям $t_q \cdot \sigma_r$ для уровня значимости q=1%. Этот метод позволяет проверить предположение о нормаль-ности сразу для большого количества распределений, которые могут при этом характеризоваться различными средними и дисперсиями. Все эти результаты позволяют считать, что про-цесс движения живых организмов является броуновским, а основной параметр — это средняя длительность пробега. Зная скорость движения,

³.Кобозев Н.И. Бюлл.МОИП,биол.отд.,т53 (1),1948.

⁴ .Терентьева З.А. Теоретичсекая и экспериментальная биофи-зика(Межвузовский сборник). Калининград: КалГУ, 1976. вып. 6. с. 102 - 131.

можно вычислить и среднюю длину пробега импульса λ . И тогда при значении величины векто-ризации процесса кинематики η , векторная компонента стратегии поиска L составит величину: N· $\eta \cdot \lambda$, а броуновская компонента составит величину $\pm 1/2 \cdot (1-\eta/\eta) \cdot N \cdot \lambda$, где N - число пробегов в стратегии поиска. Таким образом, траектория векторно - броуновского движения живого организма, имею-щего сложную кинематику перемещения не только в плоскости, но и пространстве (рис.1.3;1.4), не зависит от принадлежности к виду живого организма (бактерия, пла-нария, бабочка).

Рис 1.3 Траектория и график движения бактерии Вас. Megatherium(N⁰⁷). График изображен с шагом по времени Δt =2 сек (на самом деле рассчитан с Δt =1 сек)

Рис. 1, 4. Траектория и график движения планарпи ($N_{\rm P}$ 30). График—с шагом по времени Δt =25 сек (просчитан с Δt =5 сек)

Повидимому уравнения движения таких векторно - броуновских объектов сначала было дано М.Смолуховским⁵. Решение такого вида уравнений для сравнительно редких явлений в общем объеме поиска движения приводит к формуле распределения Пуассона с вероятностью распределения (Р),которая может быть определена как вероятность стратегии поиска:

$$P = \frac{\lambda^n \cdot e^{-\lambda}}{n!} (1.2)$$

В данном случае λ - область распространения импульсов от импульса к импульсу для числа n - объектов движения.

Но, если форма движения живых объектов понята как векторно - броуновское движение во времени и пространстве, приводящее к указанной величине вероятности стратегии поиска в области распространения импульсов движения и нервной реакции живых организмов, то какова же форма броуновского движения молекул одорантов, число которых в

⁵ .Smoluchwski M.V. Bull.Intern. de l'Ac.sci.de Cracovie,1906.202.

общем объеме пространства невелико по сравнению с самим объемом этого пространства. Кинетика распространения тако-го броуновского движения молекул, улавливаемых живыми организмами в качестве феромонов, скорее всего может быть описана достаточно сложными уравнениями Фоккера - Планка. Рассматривая физико-химические процессы как фор-мы броуновского движения с функцией распределения вероят-ности *P* любых частиц сортов *i*, *j*, общее число которых ω , уравнение Фоккера–Планка для координат φ_i , φ_i и времени *t* в соответствии с работами А.Н.Колмогорова:

$$\frac{\partial P_{ik}}{\partial t} = TP_i + \sum A_{ik} \frac{\partial P_{ik}}{\partial \varphi_i} + \sum_i \sum_j B^{ik}(y) \frac{\partial^2 P_{ik}}{\partial \varphi_i d\varphi_j}$$
(1.3)

где Т-ивариант.

К аналогичному и независимому решению приходит и проф. С.С.Васильев Кинетический анализ реакций для кон-центрации *n_i*, *n_j* любых частиц сортов *i*, *j*, общее число которых равно ω для любого числа сортов частиц записывается в форме уравнения:

$$\frac{\partial n_i}{\partial t} = U_i + \sum_j a_{ij} n_j + D_i \Delta n_i$$
(1.4)

где а_{ij} – коэффициент, выражающий обобщенную константу скорости реагирования частицы сорта j, в результате чего появляется сорта i; U_i – скорость процессов, приводящих к появлению частиц сорта i, которые не связаны с реагированием частиц сорта j; D_i – физический коэффициент диффузии частиц сорта; Δ– знак оператора Лапласа.

Сравнивая (1.3) и (1.4) убеждаемся, что уравнение Фоккера-Планка представляет собой более общую запись уравнения (1.4) в категориях функций распределения частиц Р для сортов і и j.

По существу уравнение Фоккера–Планка описывает такой вероятный процесс, который называется в математике марковским процессом в непрерывном времени и описывает явле-ние диффузии (третий член уравнения). Кинетике взаимо-действия частиц, второй член в уравнении (1.3), – соответствует марковский процесс в дискретном времени, решением которого для уравнения вида (1.5) является распре-делением Пуассона (1.2).

$$\frac{dP_{ik}(y)}{dt} = \sum A_{ik} P_{ik}(y)$$
(1.5)

Полученные результаты позволяют утверждать, что физико органическая химия восприятия молекулярными рецепторами живых организмов молекулярных одорантов воспринимается от импульса к импульсу именно в силу иерархии аналогии (синэргизма) в кинематике движения живых организмов И кинетки распространения молекулярных феромонов. Именно векторно - броуновская форма движения живых организмов и аналогичная форма движения малого количества феромона в общем объеме пространства приводит к взамно однозначной ориентации во времени пространстве системы молекулярный феромон 👄 молекулярный рецептор, взаимодействие (узна-вание которых) происходит в пространстве "от импульса к импульсу", эффект, который можно рассматривать по аналогии с туннельным эффектом, как "эффект опережения"--молекулярный феромон "причина" с молекулярная рецепция "следствие".

Тем самым в кинематике живых организмов и кинетике одорантов имеет место единая векторно - броуновская форма по принципу "флюктуации" взаимодействия нервных импуль-сов и распространяемых одорантов. На первый взгляд кажется исключительно важным только понимание тонкой структуры взаимодействия мембран клеток обонятельного эпителия, его структур с молекулами душистых веществ. В этом смысле безусловно работы Монкриффа(1951)⁶ и Эймура(1962)⁷ заслу-жили самого пристального внимания со стороны структура-листического подхода к пониманию механизма рецепции запа-ха. Монкрифф предположил, что рецепция запаха основана на стерическом соответствии между структурой молекулы пахучего вещества и структурой некоторой полости в рецепторной клетке. Он предположил, что существует от 4 до 12 типов рецепторов, каждый из которых отвечает опреде-ленному запаху. Гипотеза оказалась плодотворной для объяс-нения взаимодействия ферментов с их субстратами, антител с антигенами, молекул ДНК с молекулами РНК. Дж. Эймур развил и детализировал теорию Р. Монкриффа. Потребовалось два усовершенстования: во-первых, установить, сколько су-ществует видов рецепторов, и во-вторых, определить размеры и форму каждого из них. Для определения количества видов рецепторов Эймур установил число основных запахов, считая, что каждый из них отвечает форме рецептора. Это было достигнуто при объединении 600 соединений в группы на основе сходности запаха (иерархия аналогии или прямое подо-бие). На основании частоты встречающихся запахов удалось выделить 7 запахов, которые можно рассматривать как пер-вичные. При смешивании первичных запахов в определенных пропорциях можно получить любой известный запах. Молекулы важнейших запахов могут совпасть только с одним видом рецепторов, тогда как молекулы сложных запахов должны подходить двум или даже большему числу видов рецепторов. Поэтому важнейшие запахи в чистом виде встречаются реже, чем сложные. Чтобы воспринять семь первичных запахов, в носу, согласно теории Эимура, должно быть семь различных типов обонятельных рецепторов. Ученый пред-ставлял рецепторные участки в виде ультрамикроскопических щелей или впадин в мембране нервного волокна, каждая из которых имеет своеобразную форму и величину. Предпо-лагалось, что молекулы определенной конфигурации «вписы-ваются" в каждый из этих участков, подобно тому, как штеккер входит в гнездо. Следующей проблемой было изучение формы семи рецепторных участков. Оно

⁶ .Moncrieff R.W. The Chemical Senses. J.W.,New York,2nd Edition,1951.

⁷ .Amoore J.E. The Stereochemical Theory of Olfaction. - Special.Suppl., N 37, pp.1-23, 1962.

началось с исследования формы молекул различных пахучих веществ с помощью мето-дов современной стереохимии. Оказывается, используя диф-ракцию рентгеновских лучей, инфракрасную спектроскопию, электронно-зондовый анализ и целый ряд других методов, можно построить трехмерную модель молекулы. Когда таким образом были построены молекулы всех соединении, обладающих камфарным запахом, оказалось, что все они имеют примерно одинаковую округлую форму и диаметр, равный семи ангстремам. Это означало, что рецепторный участок для камфарных соединений должен иметь форму полукруглой чаши такого же диаметра.

Таким же способом были построены и модели других «пахучих» молекул. Выяснилось, что мускусный запах характерен для молекул дискообразной формы с диаметром около 10 ангстрем. Приятный цветочный запах вызывается молекулами диско-образной формы с гибким хвостом, как у воздушного змея. Прохладным мятным запахом обладают молекулы клино-образной формы. Эфирный запах обязан своим проис-хождением палочковидным молекулам. В каждом из этих слу-чаев рецепторный участок на нервном окончании, повиди-мому, имеет форму и величину, соответствующую форме и величине молекул.

Итак, классификация запахов по Эмуру следующая:

1.Камфорный (камфора),

2. Мускусный (пентадеканолактин),

3.Цветочный фепилметилэтилкарбинол),

4. Мятный (ментол),

5. Эфирный (дихлорэтилен),

6. Едкий, острый (муравьиная кислота),

7. Гнилостный (бутилмеркаптан).

По авторитетному мнению М.В.Волькенштейна⁸, "не считая эту классификацию исчерпывающей, можно утверждать, что обонятельная рецепция начинается с узнавания молекуляр-ной структуры пахучих веществ репепториыми участками мембран соответствующих клеток". На рис. показаны структуры молекул и формы соответствующих полостей. Едкий и гнилостный запахи определяются уже не структурой, а зарядом — электрофильные

⁸.Волькенштейн М.В. Биофизика. М.:Наука, 1988.-592С.

вещества с малыми молекулами имеют едкий запах (HCOOH, S0₂, Cl₂), нуклеофильпые—гни-лостный (H₂S). В Е.Е.Фесенко в 70-е годы занимался изучением молекулярных механизмов фоторецепции и обонятельной рецепции. Показал медиаторную роль циклического гуанозин-монофосфата в возбуждении фоторецептора, объяснил низкий уровень шума фоторецепторной клетки, позволяющий детектировать отдельные кванты света, выделил и охарактеризовал мембранные гликопротеиды с высоким сродством к пахучим веществам, определил их субъединичное строение,а в 1979 г. защитил диссертацию на соискание степени доктора биологических наук на тему: "Первичные процессы рецепции запаха и света".

- 1. Фесенко и сотрудники исследовали мембраны клеток обоня-тельного эпителия и установили в них присутствие структур, обладающих высоким сродством к камфоре (лягушка, крыса) и к некоторым аминокислотам (скат). Специфичность взаимо-действия с пахучим веществом, высокая константа связы-вания и отсутствие таких структур в других клетках указывают на наличие обонятельных рецепторных молекул. По Воль-кенштейну полагается, что "взаимодействие рецептора с пахучим веществом приводит к появлению нервного импульса вследствие деполяризации мембраны аксона. Механизм этого процесса пока не ясен. Обонятельный анализатор может воспринимать одну молекулу. Узнавание требует времени порядка 0, 1 с.".
- 2. В работах⁹ предложена оригинальная компьютерная модель обонятельной луковицы (ОЛ). В этих работах осуществлена проверка адекватности нейронной модели биологическому прототипу проведенных компьютерных экспериментов.
- 3. Полученные результаты свидетельствуют, что модель способна воспроизводить "незапрограммированные" феномены, по своей сути аналогичные психофизическим феноменам, харак-терным для обоняния¹⁰. В этом плане было интересно понять, в какой мере электронно - молекулярная структура одорантов позволяют классифицировать запахи и их интенсивность, поскольку "авторитетное мнение" ряда ученых отрицают подобного рода корреляции.

⁹ .Воронков Г.С.,Изотов В.А. Нейронная сеть для представления о обработки информации на первом синаптическом уровне обонятельной системы.//Всеросс. Научно-техн.конфе-ренция"Нейроинформатика-

^{99&}quot;.Сб.науч.трудов.ч.1.М.: МИФИ, 1999.с.155-162:Изотов В.А.,Воронков Г.С. Биофизика, 1999. т.44, вып.1,с.120-122.

¹⁰.Бронштейн А.И. Вкус и обоняние. М.:Наука, 1950.-389с.

Компьютерные модели молекулярной рецепции и классификации одорантов

Компьютерная модель среды обоняния
Компьютерное моделирование свойств одорантов

1.Компьютерная модель среды обоняния

Описание методики компьютерного эксперимента. Компьютерная модель ОЛ содержит четыре группы обонятельных рецепторных нейронов (ОР), Каждая группа специфически реагирует на запахи. В качестве условной обонятельной латинского среды используются буквы алфавита, интерпретируемые качества" как "элементарные (компоненты) запаха . Первая группа ОР реагирует на качества a,b,c,d,e. вторая - на e,f,g,h,I, третья группа - па j,k,i,m,n, четвертая группа реагирует на скорость потока воздуха. Эту группу была названа механорецепторами. Реакция ОР на "элементарные качества" различается по силе. Так, например, реакция ОР на c,g,i, максимальна, а на e,a,j, минимальна по величине. Кроме качественного состава ОР реагируют на интенсивность вход-ного одоранта. Функция ответа ОР на "концентрацию" компо-ненты запаха имеет вид колоколообразной кривой. Выходные сигналы снимаются со всех кисточковых и митральных клеток ОЛ в виде аналога мембранного потенциала. Модель функцио-нирует в режиме "вдох" - "выдох". Длительность каждого вдоха и выдоха, количество вдохов - выдохов задается эксперимен-татором в режиме диалога. Имеется возможность после каждого вдоха выдоха менять концентрацию и компонентный состав исследуемого одоранта.

Результаты численного эксперимента и обсуждение. Одно из ярких свойств обоняния - это восприятие как целого сложного запаха (букета), получающегося в результате слияния множества пахучих компонент. Моделирование слияния запа-хов проводилось авторами следующим образом. Сначала на вход модели подавался запах, состоящий из смеси компонент только первой группы, например Ь,с,а. Затем подавалась смесь, состоящая только из компонент второй группы f,k,g. После этого подавалась смесь из компонент обеих групп а , b , c , g,k,f. Результаты оценивались по клеток ОЛ. активности кисточковых выделяющих обобщенный, интегральный образ Ha запаха. стимулирование ОР запахами, состоящими только из компонент первой группы, откликалась одна из кисточ-ковых клеток (КК), на стимулирование только компонентами второй группы - другая КК. а на общую смесь откликалась новая КК. При этом активность первых двух клеток подавлялась. Таким образом, слияние многокомпонентных запахов проявляется в том, что в ОЛ актуализируются новые КК, которые и есть новый запах.

Сильные и слабые запахи. Хорошо известен факт, что некоторые пахучие вещества пахнут слабее других при любых концентрациях. Это свойство естественным образом вытекает из характеристик ОР, принятых в компьютерной модели. При экспериментировании на вход сначала подавались одоранты, состоящие из компонент **a**,**e**,**j**,**n**. Концентрации компонент возрастали от минимального до максимального значений. Затем аналогичные эксперименты прово-дились для одорантов, состоящих из компонент **c**,**g**,**I**. Во втором случае максимальная величина ответов соответствующих КК была выше на 20%.

Подавление слабого запаха сильным. Сначала подавался слабый запах а в оптимальной концентрации, на который откликалась одна из КК(а). Затем подавался сильный залах g также в оптимальной концентрации, на который откликалась другая КК(g). После этого подавалась смесь **a**,g. При этом наблюдалась активность КК(g), а активность КК(а) подавлялась. Таким образом, для подавления сла-бого запаха сильным требуется, чтобы они входили в разные группы "элементарных качеств".

Компенсация запахов. Сначала подавался одорант, состоящий из компонент **a**,**g**,**c** в оптимальной концентрации. Система откликалась активностью КК1. Затем подавался одорант **c**,**g**,**I** в концентрации выше оптимальной. Система откликалась активностью КК2. После этого подавалась смесь из первого и второго одорантов в тех же концентрациях. Фиксировалось полное отсутствие отклика кисточ-ковых клеток ОЛ.

Таким образом, для достижения компенсации запахов требуется выполнение ряда условий. Диапазон концентраций запахов, воспринимаемый ОР должен быть ограничен сверху, компонентный состав смешиваемых запахов должен сильно перекрываться и концентрация хотя бы одного запаха должна быть выше оптимальной. Только при соблюдении этого набора условий происходит компенсация запахов.

Изменение запаха с течением времени. Сначала подавался многокомпонентный запах **c,g,f,h** в оптимальной концентрации. Сис-тема откликалась активностью одной из КК. Затем концентрацию компоненты первой группы - с постепенно уменьшали. При определенной (пороговой) концентрации с проис-ходило изменение отклика системы. Активная КК замолкала и активизировалась другая кисточковая клетка. Таким образом, изменение запаха во времени можно объяснить уменьшением концентрации отдельных его компо-нент ниже порога восприятия ОР. При этом существенно то, чтобы запах состоял из компонент разных групп.

Последовательные обонятельные образы. Способность человека ощущать запахи после прекращения действия одоранта, очевидно, связана со следовыми процессами в высших обонятельных центрах. Однако и в ОЛ наблюдаются кратковременные следовые

процессы, демонстрируемые компьютерной моделью. На длительность следового процесса оказывает влияние как компонентный состав одоранта, так и его концентрация, Отмечено уменьшение длительности последействия при высоких концентрациях запаха и увеличении числа компонент.

Сенсибилизация.- В психофизических экспериментах отме-чено повышение чувствительности к запаху после много-кратного воздействия этого запаха. Исследование этого свойства на модели ОЛ производилось следующим образом. Сначала определялась порого-вая концентрация для опреде-ленного запаха. Затем на вход подавалась серия вдохов-выдохов этого запаха в надпороговой концентрации. После чего опять подавался запах в подпороговой концентрации. При этом наблюдался отклик соответствующей КК на подпороговую концентрацию запаха. Через несколько вдохов-выдохов отклик пропадал. Отмечено существование оптимального режима "тренировки" ОЛ, дающего максимальный сенсибилизи-рующий эффект. Максимальный эффект достигается после серии коротких вдохов-выдохов при умеренных концентрациях запаха.

Последовательный обонятельный контраст. - Это свойство проявляется как следствие сенсибилизации. Однако требуется выполнение определенных условий. Запахи, к которым желательно повысить чувствительность должны входить в те же группы "элементарных качеств" для которых производится тренировка. Например, если желают повысить чувстви-тельность к запаху с, g, то должны тренировать ОЛ на запахах, входящих в первую и вторую группы - a,b,e,h,f,d.

Синергизм. - Общее повышение чувствительности достигается при "тренировке" запахами, состоящими из компонент всех групп "элементарных качеств".

Выводы.- Г.С.Воронков и В.А.Изотов делают заключение, что проявленная в экспериментах способность компьютерной модели воспроизводить "нсзаирограммированные" феноме-ны, аналогичные психофизическим феноменам, характеризующим обонятельную систему, рассматривается как свидетельство близости модели к её биологическому прототипу -обонятельной луковице(ОЛ).

2.Компьютерное моделирование свойств одорантов

Модельно - описательный подход психофизического феномена обонятельный системы, рассмотренный на примере рабо-ты исследователей в предыдущем разделе путем расчета прототипа обонятельной луковицы как примера работы нейронной сети может быть дополнен примером расчета физико-химических свойств одорантов, моделируемых в компьютерном эксперименте¹¹.Существующий опыт по использованию компьютеров для прогнозирования свойств лекарственных¹² и физиологически активных веществ позво-ляет оперировать структурными формулами, а характер кол-лективизации и локализации электронов в соответствующих молекулярных группах углеродной цепи не учитывается. Между тем структурная теория и стереохимия органических соединений показывают, что использование, например, различных структурных формул бензола (в частности Клауса, Дьюара, Ладенбурга и др.) иногда в неявном виде требует учета как коллективизации, так и локализации электронов в молекуле, что использовалось при создании новых методов синтеза. Однако для КМ

¹¹ .Ерофеев Б.В.,Кутолин С.А.,Третьякова Г.С.,Смирнова Е.Г.Ж. "Известия АН БССР", сер.хим.наук, деп.ВИНИТИ, №1814-В87,1987.- 14с.

¹² .Голендер В.Е., Розенблит А.Б. Вычислительные методы конструирования лекарств.-Рига:Зинатне, 1978.232с.

(компьютерногоо моделирования) использование только структурных формул недостаточно. В отношений же прогнозирования физико-химических свойств душистых веществ, а также классификации последних (цветоч-ные, фруктовые запахи) имеются лишь общие физические и химические представления. Между тем, как раз в области эмпирического поиска душистых веществ достигнуты опреде-ленные результаты, поскольку они могут рассматриваться с тех же точек зрения, что и боевые отравляющие и психот-ропные вещества, а также их антидоты¹³, поскольку действие последних воспринимают, чаще всего и прежде всего рецепторы запаха.

Заметим, что метод КМ, основанный на упрощенных представлениях о строении конденсированных соединений, как находятся в квазиатомном состоянии оказался пригодным для решения ряда задач в неорганической и физической химии¹⁴.

Метод способствовал решению как прикладных, так и теоретических задач, в том числе о существовании элементов с большими значениями порядкового номера и распространенности элементов в литосфере . Эти исследования показали, что коллективизированные (N_k) и локализованные (N_n) состояния электронов определяют взаимодействия между атомами, а энергию связи E_0 , число N_k и характер связи между атомами приближенно определяется соотношением :

$$E_0 = \frac{2.21}{r^2} N_k^{5/3} - \frac{0.916}{r} N_k^{1/3} + 0.62 \cdot N_k^{4/3} \ln r(2.1)$$

¹³ .Оксенгендлер Г.И. Яды и противоядия. -Л.:Наука,1982.-191с.

¹⁴ .Кутолин С.А.,Котюков В.И.,Писиченко Г.М. Кибернетические модели в материаловедении.-Новосибирск:Chem.Lab. NCD, 1996.-232c.

где г = L/2a₀ (L - длина связи между атомами в A; а =0,528 A - радиус боровской орбиты). При этом число локализованных электронов дается как число валентных электронов минус число коллективизированных. Для ординарной, двойной и тройной углерод-углеродных связей числа коллективизирован-ных электронов равны: 2,2; 2,6 и 2,8, а число локализованных 0; 1,4 и 3,2.

В качестве банка исходных данных для КМ свойств душистых веществ использовались данные работ по физико-химическим свойствам веществ и их принадлежности по запаху. Ниже приняты индексы для веществ с цветочным запахом -I, а с фруктовым - 2. В качестве искомых функций: молекулярного веса М, плотности Д взяты значения из табл. І. Классификаторы запаха I и 2 принимались, исходя из строения молекулы .aprументы с x1 по X12 с учетом аргументов $X_{16} - X_{19}$ соответствующих числу коллективизированных электронов в углеродной цепи N^c_k ~ (x₁₆), электронов, локализованных в углеродной цепи N^C_k, коллективизированных в функциональ-ных группах N^Ф_k и локализованных в функциональных группах N^Ф_л для соединений алифатического, карбоциклического и ароматического ряда, причем значения соответствующих типов электронов в углеродной цепи и функциональных группах суммировались. Примеры результата такой классифи-кации аргументов приведены в табл. І. Для молекул душистого вещества в целом были получены компьютерные модели в форме линейной регрессии, позволяющие распознавать с коэ-ффициентом корреляции модели (ккм) не менее 55% (а для отдельных классов веществ - до 100%) вещества, обладающие фруктовыми (2) или цветочными (I) запахами. При этом функциональная величина классификации запаха У при У ≥1,45 рассматривается как классифицирующая запах по

принадлежности к фруктовым. т.е. У=2, а при У \leq 1.41- как принадлежность к веществам с цветочным запахом. Область У=1,412 ÷ 1,45 классифицируется как промежуточная со смешанными ароматами, принадлежащими к классификаций Эймура. В табл. 2 даны значения коэффициентов a_i , для соответствующих аргументов x_i , используемых для вычисления значения классификатора запаха:

$$Y = \sum_{i} a_{i} \cdot x_{i} + b$$

Оказалось, что вклад входящих аргументов, рассчитанный методом исключения, приходится в основном на следующие: x₃ - число атомов кислорода - 14,4%; x₁₈ количестве коллективизированных электронов в функциональных группах -52.7%; х₁₉ - количество локализованных электронов в функциональных группах(в ряду алифатических, карбоцикли-ческих и ароматических соединений) - 10.2%.

Результаты КМ молекулярного веса душистых веществ алифатического, М_{ал}, карбоциклического, М_{кбц}, ароматического, М_{ар} рядов позволили представить соответствующие величины как функцию необходимых и достаточных аргументов уравнениями вида:

 $M_{a\pi} = 13.87 \cdot x_{1} + 14.61 \cdot x_{3} - 2.30 \cdot x_{12} + 0.87 \cdot x_{4} + 0.14 \cdot x_{9}^{2} - 0.75 \cdot x_{5} + 3.03(2.2)$ $M_{\kappa \ 6 \ \eta} = 14.02 \cdot x_{1} + 4.91 \cdot x_{18} - 0.57 \cdot x_{12}^{2} + 0.05x_{6} + 0.14 \cdot x_{9}^{1} - 1.66(2.3)$ $Ma \ p = 12.04 \cdot x_{1} + 15.99 \cdot x_{3} + 0.04 \cdot x_{2}^{2} - 0.72x_{5} + 5.62(2.4)$

Если результат классификации душистого вещества по характеру его аромата определяется строением молекулы в целом (величиной Y), то молекулярный вес душистых веществ является функцией фрагментарного ее строения, что с несом-неентсью следует из уравнений (2.2 ÷ 2.4). При этом вклад числа углеродных атомов в молекулярный вес душистого вещества оказывается преимущественным и составляет (по данным метода исключения) в ряду: ал - кбц ар, соответ-ственно: 95.1%,88.8%, 78.2%, Таким образом, вкусовая рецепция есть функция молекулярно - структурных факторов вещества! Результаты моделирования плотности одоранта как функции необходимых и достаточных аргументов описывается следующими уравнениями:

 $\begin{aligned} \mathcal{A}_{a\pi} &= -0.28 \cdot x_7 + 0.03 \cdot x_{19} - 0.14 \cdot x_{12}^2 + 0.42x_{12} - 0.0003 \cdot x_2^2 + \\ &+ 0.001 \cdot x_{10}^2 - 0.13 \cdot x_{11}^2 + 0.19x_{11} + 0.737c \cdot c \ \bar{\mathcal{M}}^3 (2.5) \\ \mathcal{A}_{\kappa \ \bar{\sigma} \ \bar{\eta}} &= -0.29 \cdot x_6 + 0.41 \cdot x_9 - 0.03 \cdot x_{19}^1 - 0.03x_9^2 - \\ &- 0.0003 \cdot x_2^2 + 0.131c / c \ \tilde{\mathcal{M}} (2.6) \\ \mathcal{A}_{ap} &= 0.21 \cdot x_8 - 0.07 \cdot x_{16} + 0.04 \cdot x_2^2 - 0.33x_7 - \\ &- 0.27 \cdot x_6 + 1.980c / c \ \tilde{\mathcal{M}} (2.7) \end{aligned}$

В ряду прогнозирования плотности душистых веществ: алкбц-ар, коэффициент корреляции модели весьма высок и равен, соответственно: 96.9%, 98.8%, 74.3%. В зависимости от принадлежности молекулы к алифатическому, карбоциклическому или ароматическому ряду плотность душистых веществ определяется (см. уравнения 2.5 ÷ 2.7) фрагментарным строением молекулы, в ряду ал-кбц-ар соединений более информативными, то есть вносящими больший вклад в определение свойства, являются: x₁₂ - число двойных связей в ряду алифатических соединений (61,8); х₉ - число групп СН₃ в соединениях карбоциклического ряда (95,0%); х₁₆ - число коллективизированных электронов в углеродной цепи соединений ароматического ряда (27,6%). Высокие значения ккм и сравнительно малые относительные ошибки в определении физико-химических свойств и классификация У (табл.) указывают душистых веществ по на

функциональную зависимость между силой аромата F, насыщенностью запаха (оттенком аромата) r_{23} и физикохимическими свойствами душистых веществ (величиной У, определяемой аргументами x_{16}, x_{19} , то есть чис-лом коллективизированных и локализованных электронов, а также величинами M и Д). Для количественной трактовки представим величину F в виде:

$$F = \frac{x_{16} \cdot x_{19}}{r_3^2} (2.8)$$

Тогда, рассматривая парообразное душистое вещество как подчиняющееся, с одной стороны, газовому закону вида: PV=nRT, а с другой стороны - закону диффузии: D = RT/ $6\pi\eta r^3$, что справедливо при низких температурах, а таюке учитывая, что n = m /M, а Д = m /V, получаем закон проникновения ду-шистого вещества через полупроницаемую перегородку (ана-лог закона осмоса) для душистого вещества в виде:

$$P = \frac{\mathcal{I}}{M} \cdot RT(2.9)$$

Далее, заменяя величину Р для одного моля газа (2.9) через RT/V, полагая V =4/ $3 \cdot \pi r^3$, и RT =6 $\pi r^3 \cdot D$, где г, η, D размер молекулы, вязкость и коэффициент диффузии душистого вещества через полупроницаемую мембрану, находим:

$$r_3^2 = \frac{3\eta M(2D_e + D_i)}{2\Lambda RT} (2.10)$$

где 3D=2De+Di -т.е. утроенное значение коэффициента душистого вещества внутрь и из полупроницаемой перегородки рецептора, т.е. условие диффузии, при котором происходит восприятие оттенка аромата рецептором.

Ограничиваясь только физико-химической моделью душистых веществ, смысл которых следует из формул (2.8), (2.10). Н.П.Рашевский¹⁵ получил для иннервируемой клетки пресинаптической мембраны выражение аналогичное (2.10), хотя и отличающееся от последнего на величину порядка инва-рианта. Так как в (2.10) входят неуточненные параметры: n, D_e, D_i, то прямое определение оттенка аромата возможно дополнительных лишь при опытных исследованиях. Все же. полагая, что величина r^{2}_{3} может быть определена хотя бы с ошибкой до постоянной (что может быть неточным), как отношение М/Д, то находим, что для душистых веществ величина F может быть рассчитана по (2.8), и во всяком случае методом компьютер-ного моделирования можно найти У как линейную функцию (2.8) и (2.10), которая имеет простой вид:

Укбц =0.00615 М/Д - 4,2584 F + 1,0026, (2.11)

Коэффициент корреляции модели такой функции для расчета принадлежности соединений карбоциклического ряда к дупистым веществам, обладающим цветочным запахом I или фруктовым 2, оказывается равным 99,85%, а относительная ошибка в оценке величины 2 - порядка ~1.4% отн., что позво-ляет рассматривать физико-химические критерии (2.8), (2.10) как необходимые и достаточные для определения силы и насыщенности запаха.

Значения коэффициентов а_i в классификаторе запаха У в зависимости от x_i (Табл. 2.2):

 $\begin{array}{ccccccc} x_i & a_i & x_i & a_i \\ 1 & 0.22382 & 9 & 0.27564 \\ 2 & -0.14012 & 10 & 0.19018 \\ 3 & -2.2195 & 11 & 0.13846 \\ 4 & -0.42116 & 12 & -0.20548 \\ 5 & 1.46014 & 16 & -0.07497 \\ 6 & 1.10843 & 17 & -0.00818 \\ 7 & -1.29366 & 18 & 1.24577 \\ 8 & 0.32249 & 19 & -0.70011 \end{array}$

¹⁵ .Rashevsky N. Mathematical Biophysics. Univer.of Chicago Press, 1948.p.233.

Слатителна				1			•	BHBHE	BHAR	ar	NAL C	eHT	03	3			
obuotintenno	H	08	n	4	œ	φ	0	10	6	۴	Г	L	2	E	LI	18	9
I	64	07	4	ß	9	2	22	5	10	F	1	58	13	14	12	91	È
залформаат	50	Ð	02	0	Р. Р.	H O	\$_8 0	5 51	4 e	U.S.	R, O	æ	00	но. 91	R H C	н к н 6	5,8
by FAJIBILE TAF	φ	ŝ	99	0	0	0	0	н	0	c.)	0		0	9.4	8,4	:0	5,3
SOGMALIBILE THE	5	14	0	0	0	0	0	ч	n	65	1-4		0	9"2	I0,5	9	9
SOGMAUNPOILEDEST	00	91	24	0	0	0	o	н	ça,	63	н		0	1,4	L2,6	ø	φ
анылырормист	11	18	2	0	0	0	0	н	ŝ	03	GM .			3,6	22,4	Θ	9
					40	0	Ħ	M H	-	e	8	14	0	9 0 0	H R H	8 8 8	H
RMOHOE	A	91	0	0	0	0	0	0	512 ₀	4	54		2	9.6	20.5	57	63
apuaneo.	2	θĒ	н	н	0	0	0	0	n	c)	68		Н	6"8	20.7	0	3
REALIZOHOR	T	C2	ы	0	0	ы	•	0	4	9	4		24	1, T	28,9	, 02	en
Ipon	14	22	-1	0	0	ы	0	0	цЭ	н	ŝ		2	I"42	28,9	5	5
(Twapatt	S)	9	0	0	0	0	н	0	0	0	Φ		2		18	6.2	un

TaGARIPS I ылийстического, зарбоциклического Информационные значеным аргументов х ¿ влийстического, карболиклическог а ароматического рацов дуплостых веществ (примеры), необходилые и дооте-

7	2	e	4	a	Φ	~	æ	37	9		2	2	14	2	16	5
				d	N O	H	h H	0	N G	0	8 0	NN	HAH	R R		1
Бензальдегид	2	ω.		0	-	0	0	0	0	0	0	0	I3,9	I4,I	2,4	3,6
Корачний альдегид	6	0	ы	0	ы	0	0	0	0	0	~	н	13	18	2,5	35
Begamaleron	IO	12	ы	0	0	ы	0	0	⊷4	02	0	0	QQ	02	3,5	3,5
Jumeranalleranb-																
фенилу ксу сный																
альдегид	C	14	2	0	0	0	~2	0	~	-	н	0	91	16 I	7,6	4.4
				l					1							

B IIOpaniке возрастания номеров: часно атомов углерода, водороде, желороде; групп -0H, -0, 5⁰, ,)с=0, -0-, с≤0ск, -0H₂, -CH₂, -CH, число двойных связей, N с, N с, N ° A, A Общее число исследованных душастых веществ достагает 100. Значеныя аргументов x t

+

-

Таблица 2.3 Сопоставление результатов расчета физикохимических свойств (М,Д) и классификатора запаха (У) для душистых веществ с литературными данными

Соединение	М	Д	У
1. Этилформиат	74/74	0,92/0,90	2/2
2. Бутилацетат	II6/II6	0,882/0,854	2/2
3. Изоамилацетат	I30/I3I	0,88/0,89	2/2
4.Изоамилпропионат	I44/I45	0,879/0,874	2/2
5. Диналилформиат	I82/I82	0.918/0,932	I/I
6. Терпениол	154/154	0,947/0.991	I/I
7. Ирон	206/206	0,940/0,971	I/I
8. Бензальдегид	106/107	1.046/1.081	I/I
9. Коричный альдегид	132/132	1,052/1,012	I/I

В числителе - данные литературных работ; в знаменателе - результаты расчета.

Такие авторитеты в биофизике как М.В.Волькенштейн считают, что квантово-химическая и вибрационная теория запахов просто неосновательны. Приведенные исследования показывают, что суть вопроса много сложнее применимости или неприменимости тех или иных элементов теории квантовых расчетов, поскольку классификация запаха и его интенсивность включает в себя как структурные элементы организации химического вещества, так и формы локализации электронов в молекуле. Примечательно и то, что что физико-химические свойства вещества такие как молекулярный вес и плотность оказываются сложной функцией вклада электронно - структурных параметров одоранта. С другой стороны как показано тем же Р.Х.Райтом сущесвует внутренняя глубокая аналогия (синэргизм) в подобии запахов между фононными спектрами различных веществ с подобными запахами:

Нитробен• зол	Бензонат- рил	Нитро- тиофен	Бутиро- нитрия	Бензаль- дегид
176	172	169	179	130
252				225
	320			237
397	381	376	370	
435	405	442		439
532	460		524	
	549			

Нитробензол, бензонитрил и а-нитротиофен имеют запахи, несколько напоминающие запах горького миндаля. Низкочастотные колебания, характеризующие эти соединения, представлены в помещенной ниже таблице. В ней приведены, кроме того, колебательные частоты бензальдегида вещества, запах которого обычно считают очень похожим на запах нитробензола; но в экспериментах, тщательно проведенных с участием 15 испытуемых, было показано, что запахи этих веществ лишь отчасти напоминают друг друга. В таблице даются также значения низкочастотных колебаний бутиро-нитрила: потому, что они очень близки к соответствующим значениям для нитробензола, а первые шесть опрошенных участников эксперимента, тщательно понюхав очищенный об-разец этого вещества, решили, что запах его также похож на запах миндаля.

Приводимые результаты и результаты компьютерного анализа позволяют выдвинуть гипотезу аутентичной рефракто-метрической идентичности схожих между собой по запахам и их интенсивности одорантов и функцирнальной зависимости рефракции молекулярного рецептора при восприятии реф-ракции одорантов.Это означает, что молекулярынй рецептор является рефрактометрическим прибором, настраиваемым на молекулярный вес, плотность и показатель преломления одоранта, в том числе, тем самым, и его цвет.

В этом смысле молекулярный вес, плотность, температура одоранта и модель распределения атомно - молекулярных ансамблей одоранта в матрице молекулярного рецептора сле-дует рассматривать как своего рода энтропийно статисти-ческий ансамбль многокомпонентных комплексно координа-ционных соединений, обуславливающих по своему явлению процесс близкий к катализу, стабилизирующему такую сис-тему как одорант - молекулярный рецептор запаха. Повидимому можно предположить, что между действием, например, лекарственных веществ на нейронную сеть, с одной стороны, и одорантов на молекулярный рецептор запаха, с другой, существует синэргизм, т.е. иерархия аналогии или прямое подобие. Вот почему первым этапом доказательства такой позиции является поиск компьютерных моделей физико - органической природы действия лекарственных веществ как функции их состава и электронного строения функциональ-ных групп, а вторым этапом - установление физико - органической модели и статистической достоверности функциональной аналогии действия душистых веществ и, например, анальгезирующих, седативных средств и т.д.

Действительно, электромагнитная энергия связана со свойствами природы вещества и определяется известными уравнениями Максвелла, где Е - , Н - , с - , є - электрическая, магнитная составляющая энергии, скорость света и диэлектрическая проницаемость среды, а rot, $\partial /\partial t$ - операторы вращения и изменения во времени электрической и магнитной энергии:

$$rotH = \frac{\partial E}{c \varepsilon \partial t}, rotE = \frac{\partial H}{c \varepsilon \partial t} (2.12)$$

С другой стороны, полная поляризация или рефракция P_{полн}. и электронная рефракция Р_{эл.} связаны с молекулярным весом М, плотностью d, диэлектрической проницаемостью є и показателем преломления n известными соотношениями:

$$P_{n \, o \, n\mu} = \frac{M(\varepsilon+1)}{d(\varepsilon+2)}, P_{_{\mathfrak{I}\!n.}} = \frac{M(n^2-1)}{d(n^2+2)} (2.13)$$

Тем самым зависимость поляризации одоранта и поляризации молекулярного рецептора запаха, как и особенности фононного колебания душистых веществ взаимосвязаны с электронным спектром вещества, как и его плотностью, и молекулярным весом вещества. И хотя такая зависимость проявляется опос-редственно, но зависимость между электронным строением душистого вещества и его составом, как показывает компью-терное моделирование, может быть представлено функциона-льной зависимостью и проявляется, например, в оценке интенсивности запаха.

Минимумы поглощения - отражения фононного спектра душистых веществ(ω_m) лежат в области кратной плазменной частоте поглощения - отражения(ω_p) душистых веществ и связаны между собой соотношениями, где N, ε_{α} , ε_{B} , m^{*}, τ , e², σ концентрация частиц душистого вещества, обладающего электрооптической природой, диэлектрические проницаемости при бесконечной частоте и в вакууме, эффективная масса, время переносимого квадрата электрооптического заряда и проводимость рецептора запаха:

$$\omega_{p} = \frac{4\pi Ne^{2}}{\varepsilon_{\infty}\varepsilon_{e}m^{*}} (2.14)$$
$$\omega_{m} = \omega_{p} \left[\frac{\varepsilon_{\infty}}{(\varepsilon_{\infty}-1)}\right]^{1/2} (2.15)$$
$$\sigma = \frac{e^{2}N\tau}{m^{*}} (2.16)$$

Фактически это приводит к мысли о том, что природа нейронной сети такова, что она способна передавать нервные импульсы как электрооптические сигналы. И если может быть предсказана аналогия действия душистых веществ и анальге-зирующих, седативных средств, то тогда может быть и понято единство природы действия на нейронную сеть рецепторов запаха и лекарственных веществ вообще, что открывает широкие перспективы для построения терапевтических моделей лечения не только сном, седативными средствами, но и одорантами.
Компьютерное моделирование анальгезирующей способности веществ ряда петидина как функции состава и электронного строения функциональных групп

Во - первых, покажем, что компьютерное моделирование свойств веществ как функции состава и электронного строения функциональных групп позволяет с коэффициентом корреляции модели 99.8% и максимальной ошибкой 3 отн.% получить правило, описывающее относительную активность анальгезирующих веществ ряда петидина (аналог морфина). Найдено, что в приближении физико-химического механизма описания действия анальгезирующих средств относительная интенсивность такого действия может быть рассчитана как энтропия по формуле Больцмана, когда вероятность распределения числа локализованных электронов в функпиональных группах анальгезирующего средства подчиняется закону Пуассона-Смолуховского.

С этой целью била использована методика компьютерного моделирования, аналогичная расчетам свойств душистых веществ. В качестве анальгезирующих средств были выбраны аналоги морфина, содержащие два кольца ряда петидина, сравнительная анальгезирующая активность которых (У), известная по данным работы¹⁶, являлась искомой функцией аргументов X_2 — X_{26} . Аргументы X_2 — X_{26} , соответствовали молекулярной массе скелета анальгезирующего средства, числу коллективизированных (N_c^r) и локализованных (N_c^n) электронов в скелете вещества, а также произведению молекулярной массы скелета на N_c^κ и N_c^n соответственно. Аргументы с X_7 , по X_{21} описывали состав и тип функциональной группы, а аргументы с X_2 — X_{26} соответствовали

¹⁶ .Дайсон Г.,Мей П. Химия синтетических лекарственных веществ.М.: Мир,1964.с.1163-1167.

суммарной молекулярной массе функцио-нальных групп, содержащихся в двухчленном кольце скелета веществ ряда петидина, суммарному числу коллективизированных (N_R^{κ}) и локализованных (N_R^{n}) электронов, содержащихся в данном числе функциональных групп, и соответственно произведению молекулярной массы функциональных групп на величину N_R^{κ} и N_R^{n} .

Результаты построения такой матрицы для получения многофакторной модели по методу¹⁷ с помощью ЭВМ приведены в табл.3.1. В результате компьютерного моделирования была получена линейная модель вида:

$$Y = \sum_{i} a_{i} x_{i} + B(3.1), z \ \partial e B = 268.81396$$

, а необходимое и достаточное число аргументов для описания искомого свойства Y оказалось на самом деле по числу меньше, чем X₂+X₂₆:

Параметр Коэффициент

7	105,11812
24	13,34068
15	58,09291
17	30,06866
11	16,57959
10	-24,09299
13	-26,11043
18	11,32864
20	-10,01432

При этом коэффициент корреляции модели в описании свойства *Y* оказался равным 99,8%, а максимальная относительная оппибка не превышала величины *3%*. Как показывает анализ вклада включенных параметров аргументов, рассчитанный методом исключения, выраженный в %: 7 — 34,7; 24 — 40,7; 15 — 10,8; 17 - 7,2; 11 - 1,1; 10 - 2,0; 13 - 2,3; 18 -0,6; 20 - 0,5, только суммарное число локализованных электронов

¹⁷ .Кутолин С.А.,Котюков В.И.,Писиченко Г.М. Кибернетические модели в материаловедении. Новосибирск: Chem.Lab. NCD, 1996.- 232c.

функциональных групп анальгезирующих средств ряда петидина (аргумент X_{24}) и положение имидного водорода (X_7 дают вклад в описание искомого свойства Y, равный 75,4%, а на остальные семь параметров приходится вклад, равный 24,6%, т.е. 3,5% на аргумент.

Физико-органическая характеристика Y, описывающая относительную анальгезируювдую активность средств ряда петидина, аналогов морфина, хорошо предсказывается на основании полученного на ЭВМ модельного правила (табл.3. 2).

Для анальгезирующих средств относительная активность У в ряду петидина определяется суммарным эффектом от действия не коллективизированных, а локализованных электронов функциональных групп. Поскольку такое действие сопровождается увеличением энтропии в нейронной сети. то следует полагать, что для анальгезирующих средств такой процесс - локальное торможение нейронной сети, а сама относительная активность анальгезирующего средства У есть инвариантное выражение статистического представления энтропии.

Действительно, как показано B^{18} и проиллюстрировано B^{19} , повышение энтропии в нейронной сети соответствует аналогу уравнения Закура -Тетроде:

$$S = nRLnT + RLn\frac{M}{d} \cdot 10^{-2} - RLn\frac{\lambda \cdot e^{-\lambda}}{n'}(3.2)$$

При постоянных температуре (Т) и величине молекулярной массы (М), что имеет место для веществ ряда петидина, энтропия процесса определяется выражением:

$$S = -RLn \frac{\lambda^n \cdot e^{-\lambda}}{n!} (3.3)$$

¹⁸ Кобозев Н.И. Избранные труды.М.: МГУ, 1978.-с.237-249.

¹⁹ Ерофеев Б.В. Изв.АН БССР, сер.хим., 1980, №1.- с.33-40.

где *n* — число функциональных групп анальгезирующего средства, или число локализованных пар электронов,

ТаблицаЗ.1

Матрица для моделирования на ЭВМ относительной анальгезирующей активности Y аналогов морфина ряда петидина

№ соеди-	X_1	Xi	X_{1}	X_{t}	X_1	X	Xa	Xp	X_{i}	X_{10}	. X., 1	Ж,,	X_{13}
	Y	Mc	N c	Nc	M _c N ^K _C	MeNde	R = H	R - CH,	C ₃ H ₄	С, Н,	$C_{\rm s}H_{\rm z}$	CH2-CH2OH	CH, OH
1	100	110	28,6	11.4	3146	1254	0	1	0	0	0	0	0
2	080	110	28.6	11,4	3146	1254	0	1	0	0	0	0	1
13	016	110	28.6	11.4	3146	1254	0	1	0	0	0	0	0
420	020	110	28,6	11.4	3146	1.254	0	4	0	0	0	0	0
5	015	110	28,6	11.4	3146	1.254	1	0	0	0	0	0	0
6	080	110	28.6	11.4	3146	1,2.54	0	0	.1	.0	0	0	0
7	050	110	28.6	11,4	3146	1254	0	0	0	1	0	0	0
8 `	080	710	28.6	11,4	.3146	1254	0	0	0	0	- 1	0	0
9	025	110	28,6	11.4	3146	1254	0	0	.0	0	0	- 1 -	0
10	020	110	28,6	11,4	3146	1254	0	1	0	0	0	0	0
11	000	110	28.6	11,4	3146	1254	0	4	0	0	0	Q.,	0
12	016	110	28,6	11,4	3146	1254	0	1	- 9	0	0	0	0
Приме	484	H C.		2 -	_								
Ĺ	Hora	-0C ₁	N—CH ₁ H ₅		\bigcirc	C00)n0 11,	H,		0	(-J-)N− DC₂H₃	Ш
*- (C	Беги Н С	дин 	N—cir, I ₄	5-	0)N—C 4	Ha	6	0	° - (_)~-	¢, II,

X.,	X_{13}	X_{14}	X_{12}	X., 1	$X_{j,q}$	\dot{X}_{20}	X	X.,	X.,	X_{24}	χ_{z} ,	X.,,
C ₃ H ₈ O	C,H,O	C.H.O	C, H,	C, H, OH	C, H, DCH,	C ₃ H ₄ NH ₃	онафини	$M_{\rm R}$	AR R	$N_{\rm R}^{\rm df}$	MRNR	$M_{\rm R}^{} N_{\rm R}^{\rm H}$
	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			137 123 165 185 123 151 165 179 167 153 167 152	42,75 37,55 53,15 52,85 37,60 47,95 53,16 58,35 49,70 44,50 49,85 49,85	15,25 14,45 16,85 21,15 13,40 16,05 16,85 17,65 20,30 19,50 20,15 18,20	05856,70 04618,60 08769,75 09777,25 04624,80 07240,40 08769,75 10444,60 08299,90 06808,50 08324,90 06961,60	2089.20 1777.30 2780,25 3912,75 1648.20 2423,60 2780,25 3159,30 3390,10 2983,50 3355,00 2766,40
	\rightarrow		× γ−	C. L.	8-4		×	oc'n'	-CH ₁	CH.,OH	'O(N€
\langle	7	0-00	}v 2₁H₅	C ₂ H ₆	n-(2	12-	OC ¹ H ¹	-CR ₁			N-CI

приходящихся на одну функциональную группу скелета анальгезирующего вещества, а λ — область распределения функциональных групп в скелете анальгезирующей матрицы вещества или пар локализованных электронов. Если, действительно, относительная активность анальгезирующего средства У есть функция энтропии, то для безразмерной величины У можно положить

$$\frac{Y}{Y_0} = \frac{S}{R}(3.4)$$

где У₀ - активность морфина, которую примем для удобства равной 10; тогда имеем

$$Y = -Y_0 RLn \frac{\lambda^n \cdot e^{-\lambda}}{n'} (3.5)$$

Если полагать, что п изменяется в пределах от 0 до 3, что вполне разумно, так как число функциональных групп в ряду морфин-аналоги петидина как раз и изменяется в пределах трех, а среднее число пар локализованных электронов в функциональных группах $N_R^{\pi}/2 \cdot 3 \rightarrow 3$, то при величине $\lambda \rightarrow 2/5$, т.е. при условии, когда распределение функциональных групп в 2,5 раза больше самой матрицы анальгезирующего средства, являющегося морфином, а п = 3 и У₀ = 10, величина Y =97,93, т.е. близка к максимальной активности (100) веществ ряда петидина. Наоборот, при п $\rightarrow 0$ и $\lambda \rightarrow 1$, когда, по сути, .вещество ряда петидина слабо отличается от своего скелета, т.е. морфина, У = 19,85, что свидетельствует о слабой относительной активности веществ ряда петидина по сравнению с активностью исходного морфина. Для достижения величины относительной активности анальгезирующего средства У = 50 при п = 3 оказывается необходимым и достаточным, чтобы величина $\lambda \rightarrow 1,2$, т.е. распределение функциональных групп не слишком сильно отличалось от величины самой матрицы скелета анальгезирующего вещества - морфина.

Тем самым, совершенно очевидно, что и относительная активность анальгезирующих средств (аналоги морфина) имеют смысл статистического истолкования энтропии по Больцману, а вид функции распределения в таком

42

статистическом описании энтропии определяется законом Пуассона—Смолуховского

$$F(n,\lambda) = \frac{\lambda^{n} \cdot e^{-\lambda}}{n!} (3.6)$$

что и может служить мерой энтропии информации соржных каталитических систем.

Таблица 3.2

Сравнение результатов расчета относительной анальгезирутощей активности Y средств ряда петидина (аналога морфина) с экспериментальными данными Дайсона и Мея.

₩ ⁴ coett.	Y	Ύρ	Оцинбка	Nº coep.	1	Yp	Ошнбка
1	108.000	95,437	4,563	1	80.000	79,999	0.001
3	16,000	15,999	0.001	. 4	20.000	16,727	3,273
5	15,000	14,999	0.001	6	80.000	84.765	-4,765
경망감	50,000	49,999	0.001	8	80.000	79,999	0,001
9	25,000	28,067	-3,067	. 10	20,000	19,999	0,001
H = -	0,0	-0.000	0.000	. 12	16,000	15.999	0.001

Компьютерная модель функциональной способности веществ ряда фенетидина проявлять анальгезирующие, жаропонижающие и токсичные свойства в зависимости от состава и строения функциональных групп

Впервые обнаружена возможность моделирования в рамках аппарата физической химии активности жаропонижающих средств (токсичность, анальгезирующий и жаропонижающий эффект) ряда фенетидина (аналоги фенацетина) в зависимости от состава функциональных групп и их электронного строения. Показано, что жаропонижающая активность связана с эффектом аггравации, когда искомое свойство определяется в том числе произведением молекулярной массы функциональных групп на суммарное число коллективизированных и локализованных электронов этих групп.

Эвристическим методом найден закон, описывающий активность жаропонижающих средств в энтропийно-статистическом приближении истолкования анальгезирующего, жаропонижающего эффекта и токсичности.

Общеизвестно, что жаропонижающие средства, такие как фенацетин, обладают не только жаропонижающим, но и болеутоляющим (анальгезирукицим) эффектом, а также токсичностью. В предыдущей главе показано, что действие седативных и анальгезирующих средств (ряд петидина) сопровождается изменением энтропии в нейронной сети нервной системы, что и определяет относительную активность этих веществ в ряду подобных соединений²⁰. Поэтому представляло интерес, во-первых, в рамках разрабатываемого метода компьютерного моделирования

²⁰ .Ерофеев Б.В., Кутолин С.А. и др.ДАН,1992.- т.325.- №1.с.88-92.

физико-химического механизма интенсивности действия фенетидина (аналоги фенатидина), веществ ряда проявляющих функциональные свойст-ва (анальгезирующий (а), жаропонижающий (ж) эффекты, токсичность (т)), найти избирательное влияние электронного строения и состава различных функциональных групп на интенсивность действия лекарственных веществ, а, во-вторых, на основании результатов такого моделирования дать энтро-пийнонаблюдаемым фактам статистическое толкование эвристическим методом, если это возможно, так как предыдущие исследования свидетельствовали о плодотворности такого подхода.

Обоснования компьютерного варианта расчета интенсивности действия лекарственных веществ приведены в предыдущих главах работы. Эмпирический материал об активности веществ ряда фенетидина заимствован из цитированной работы Дайсона и Мея. Анальгезирующая, жаропонижающая активность, а также токсичность веществ, обозначаемая обычно критериями: "отсутствует", "низкая", "средняя", "высокая", принимались, соответственно, равными числам 1, 2, 3, 4.

Искомые функции y_a , y_{π} , Y_{τ} т.е. анальгезирующая. жаропонижающая способность и токсичность, искались как функции аргументов X_1 по X_{26} (табл. 4.1), где X_1 молекулярная масса скелета, а X_2 - X_5 , — суммарное число коллективизированных и локализованных электронов, т.е. N_c^{κ} , N_c^{π} , в скелете матрицы вещества, а также произведение этих величин на молекулярную массу скелета. Значения этих величин для всех соединений равны и приведены ниже:

X_1	X_2	X_3	X_4	X_6
M_{c}	$N_{c}^{\ \kappa}$	$N^{\pi}_{\ c}$	$M_{\rm c}N_{\rm c}^{\ \kappa}$	$M_{\rm c}N^{\pi}_{c}$
135	34.25	15.75	4623.7	2126.2

Аргументы с X₆-X₂₀, X₂₆ описывают состав функциональных групп фенетидина, а аргументы X₂₁-X₂₆, соответствуют значе-

ниям суммарной молекулярной массы функциональных групп, включаемых в скелет матрицы MP, суммарному числу коллективизированных (N_R^{κ}) и локализованных (N_R^{π}) электронов, а также произведению этих величин и молекулярную массу M_R соответственно.

В результате компьютерного многофакторного моделирования были получены линейные уравнения вида: $Y = \Sigma a_i X_i + B$, где $a_i u B$ — коэффициенты, описывающие в рамках модели искомое свойство: $Y_a, Y_m Y_T$.

Не все 26 аргументов, а лишь ограниченное число параметров оказалось необходимым и достаточным для описания искомого свойства.

I. Модель для расчета Y_a . В результате построения модели анальгезирующей активности веществ ряда фенетидина были получены уравнения, где величина B = 3,0, значения включенных аргументов X_i принимали следующие коэффициенты a_i причем аргумент X_6 оказался в степени 2:

Параметр Коэффициент Параметр Коэффициент

13	-1,99999	6	-0,25000	
26	-1,99999	9	-0,74999	
15	1,25000	11	-0,74999	
8	1,25000	17	-1,25000	
12	-2,25000	10	-1,25000	
17	1,25000	19	0,25000	

При этом вклад включенных параметров, рассчитанный методом исключения, составил 70% для следующих аргументов функциональных групп: 2,6-15,1; 13-15,1; 12 - 19,1; 7 - 18,6, а коэффициент корреляции модели был близок к 1. При этом, как показывают результаты расчета (табл. 4.2), абсолютная опшбка между расчетной величиной и опытом равна нулю практически для всех 15 результатов опыта. Этот поразительный факт свидетельствует по существу о наличии, видимо, функциональной зависимости между искомым свойством и аргументами, имеющей смысл закона! Следует

отметить, что характер действия анальгезирующего эффекта У_а вешества ряда фенетидина отличается от действия на нервную систему веществ петидина (ряд морфина) видом и характером включаемых функциональных групп, хотя, как будет показано, энтропийно-статистическая природа такого действия на нейронную сеть сохраняется в обоих случаях.

Таблица 4.1

Классификационная матрица активности действия веществ ряда фенетадина

как функции аргументов Xi

	$X_{\rm F}$	X ₁	X4	Xy	X_{17}	X_{11}	X_{13}	X, ,	X3.4	X ₁₁	X ₁₄	X _i
№ соспонсения	Rath	Na Juni	R=	$\label{eq:product} p = -q \Pi_{g} - q \Pi_{g} .$	Em-C-C-C-N	а	$n=-\alpha_{\mu}n_{\mu}$	р. н. 16		na [-canno-cu,	1 = D = C = D = U = D	$h = GT_p$
1	1	1	0	0	0	Ð	0	0	.0	0	0	0
2	1	0	1.	0	0	0	0	0	. 0	0	0	0
3	1	0	0	1	0	0	0	0	0	0	Q	0
4	0	1	0	0	1	0	0	0	0	0	0	0
5	6	0	0	0	0	51	0	0	0	0	0	0.
6	0	1	0	0	0	0	1	0	0	0	0	0
7	0	0	6	0	0	0	0	5a -	. 0	0	0	0
1	0	0	6	0	0	0	0	0	1 -	0	0	0
9	1	0	0	0	0	0	0	0	. 0	1.5	0	0
10	0	0	-6	0	0	0	0	0	. 0	0	1	0
11	0	1	0	0	0	9.	0	0	0	0	0	1
12	0	0	0	0	0	1	0	0	. 0	0	.0	0
13	2	0	0	Ð	0	3	0	0	0	0	-0	0
14	1	0	0	0	0	0	0	0	0	0	0	0
10	0	.0	0	0	0	0	0.	0	0	0	Û	0

\tilde{s}_{μ}	X_{13}	X_{10}	X_{11}	$X_{\pm\pm}$	χ_{ij}	Nea	X ₂₁	XH	X_{17}	X ₁₆	N ₁
- POW	and die	the Same	MR	NR	NR	MRNŘ	MRNR	R=OCH,	14	Ya	Y
0	0	i.	44	12.55	7.45	552.2	327.8	0	4.B	B.4	2.1
à	6	Č.	- 177	15.6	10.4	920.4	613.4	0	8.4	B. 4	3.0
6-	n.	Ť.	02	28.65	9.35	2635.8	860.2	- 6 -	R. 2	2	2.1
0	0	0	116	29.2	18.8	3387.2	2180,8	0	3,C	3,0	2,1
0	0	i i	45	10.4	9,6	468	432	0	2H	211	2
0	0	0	72	22,9	9.1	1648,8	655,2	0	1, Č	2,11	3,6
0	0	0	80	20,5	11.5	1640	920	0	3,0	+1	3, (
0 .	0.	0	106	17.55	14,45	2920,3	1531,7	0	1,C	3, 6	3,6
Ö	0	0	-74	19,5	12,4	1443	925	0	JC	B 4	30
0	. 0	0	208	51,5	30,5	10712	6344	1	2 H	11	2.8
6	0	0	46	17,7 *	8,3	814,2	381,8	0	2.H	3.0	30
Ĵ.	0	0	104	- 31	11	3224	1144	0	3.6	3.0	30
$\hat{\Phi}_{i}$	-0	0	2	1-	T.	6	2	0	- 3 C	2.H	2.4
0 -	1	0	58	-17,75	8,25	1029,5	478,5	0	30	63	2.H
10.	0	1	174	34.65	15.35	4296.6	1903.4	0	36	10	-30

II. Модель для расчета Уж.

Модель расчета жаропонижающей активности веществ ряда фенетидина описывается уравнением линейной регрессии, где *B* = 67,32950, а коэффициенты *a* при аргументах X принимают следующие значения:

Πa	раметр К	озфрициент	Параметр	Коэффициент	
	4	0.01000	16	-0,21243	
	5	-0.05204	17	-1,94287	
	6	D,03196	1.8	0,20164	
	7	1.02549	19	0,05595	
	8	1,03059	20	0,24233	
	9	-0.85329	21	0,00065	
변신 값에 가는 것	10	-0,84963	22	-0.00419	
	11	-1.06044	23	0,00849	
	12	-0.90137	25	0,00005	
	13	0,10091	24	-0,00004	
·	14	D.16426	26	-0,21243	
- 40002-14	15	0,05327			

Вклад включенных параметров, рассчитанный методом исключения, составил для следующих аргументов в сумме 77,5%: 7 - 27,6; 17 - 31,6; 24 - 6,10; 25 - 6,10;

26 — 6,10, а коэффициент корреляции модели близок к единице.

Обращает на себя внимание тот факт, что ряд аргументов, действующих как анальгезирующие факторы, сохраняется и при описании интенсивности жаропонижающего эффекта (Х7 и Х₂₆), а в отличие от роли коллективизированных и локализованных электронов, приводящих к повышению энтропии в нейронной сети, что отмечалось для седативных морфиеподобных средств, жаропонижающий эффект проявляется как совокупное действие увеличения в матрице скелета веществ ряда фенетидина не только функциональных групп различного состава (Х₇, Х₁₇, Х₂₆), но и аггравационного эффекта²¹ от действия произведения молекулярной массы функциональных групп на суммарное число коллективизированных и локализованных электронов функциональных групп (Х₂₄, Х₂₅) веществ в скелете препаратов ряда

²¹.Кобозев Н.И.Избранные труды.М.: МГУ, 1978.т.1.-с.84.

фенетидина. Результаты сопоставления расчета и литературных данных (табл.4.3) также свидетельствуют о существовании в компьютерной зависимости какого-то строгого закона, так что абсолютная ошибка между этими величинами оказывается равной нулю.

Таблица 4.2

Сопоставление результатов расчета анальгеэирующей активности У_а для веществ ряда фенетидина с литературными данными Дайсона и Мея *

Здесь и в табл. 4.3, 4.4 нумерация соединений соответствует таковой в табл. 4.1.

Таблица4.3

Сопоставление результатов расчета жаропонижающей способности Y_ж для веществ ряда фенетидина с

литературными данными.

III. Модель токсичности веществ ряда ϕ е н е т и ди н а ($y_{\rm T}$).

Постоянный член регрессии по результатам моделирования $y_{\rm T}$ оказался рапным B = 3.22832, а коэффициенты a при аргументах X принимают следующие значения:

	Параметр	Коэффилиент	Параметр	Коэффициент	化二乙酸化甲酸化乙酯
	6	-0,61397	19	-0,52225	
	-25	-0,0019	.9	-0,44877	
S. 1	10	0,25728	- 19 I	-0,55125	- ⁹
	. 15	0,56370	12	0,44905	1. The second
	8	0,50376	17	0,39643	- 2
	.11.	-0,53120	20	0,13806	

Вклад включенных параметров, рассчитанных методом исключения, составил 71,4% для следующих аргументов: 6 - 36,7; 25 - 20,4; 7 - 14,9%, а коэффициент корреляции модели близок единице. Тем самым токсичность (y_{r}) веществ ряда фенетидина, в частности, обусловлена таким вкладом функциональных групп (X_7, X_{25}),которые являются необходимыми и достаточными в то же время и для описания анальгезирующей и жаропонижающей способности веществ ряда фенетидина. Однако,как видно из приводимого анализа, вклад этих нежелательных аргументов может быть уменьшен, что и должно повести к снижению токсичности препаратов ряда фенацетина. Как показывает сопоставление результатов расчета и литературных данных, токсические свойства веществ описываются (табл.4. 4) полученной моделью так же хорошо, как и y_{a} , y_{π} .

Таблица4.4

Сопоставление результатов расчета токсичности Y_тдля веществ ряда фенетидина с литературными данными.

Nº coatt,	Y_{Y}	Pacwer	Ошибка	№ соед.	$\gamma_{\rm T}$	Pacuet	Oumõsa
1	2,000	2,000	0.000	2	3,000	3,800	0,000
3 -	2,000	2,000	0.000 -	4	2,000	2,0000	0,000
3	2,000	2,000	0,0000	6	3,000	3,000	0,000
1.0	3,000	3,051	-0,051	8	3,900	2,933	0,067
9	3,000	3,009	0,000	10	2,000	2,007	-0.087
11	3,000	3,000	0,000	12	3,000	3,008	-0.008
13	2,000	2,609	0.000	14	2,000	2,008	0,000
15	3,000	3,000	0.000				

Ш. Модель токсичности веществ ряда ϕ е н е т и ди н а (y_{T}).

Постоянный член регрессии по результатам моделирования $y_{\rm T}$ оказался рапным B = 3.22832, а коэффициенты *а* при аргументах X принимают следующие значения:

	Параметр	Коэффициент	Параметр	Коэффациент	
	6	-0,61397	19	-0,52225	
	25	-0,0019	9	-0,44877	
S. 1	10	0,25728	- 1 · · ·	-0,55125	
	. 15	0,56370	12	0,44905	
	8	0.50376	17	0,39643	2
	11.	-0,53120	20	0,13806	

Вклад включенных параметров, рассчитанных методом исключения, составил 71,4% для следующих аргументов: 6 - 36,7; 25 - 20,4; 7 - 14,9%, а коэффициент корреляции модели близок единице. Тем самым токсичность (y_T) веществ ряда фенетидина, в частности, обусловлена таким вкладом функциональных групп (X_7, X_{25}),которые являются необходимыми и достаточными в то же время и для описания анальгезирующей и жаропонижающей способности веществ ряда фенетидина. Однако,как видно из приводимого анализа, вклад этих нежелательных аргументов может быть уменьшен, что и должно повести к снижению токсичности препаратов ряда фенацетина. Как показывает сопоставление результатов расчета и литературных данных, токсические свойства веществ описываются (табл.4. 4) полученной моделью так же хорошо, как и y_a , y_{π} .

Полагая, как и в предыдущих главах работы, что относительная интенсивность действия веществ ряда фенетидина имеет энтропийно-статистическую природу, получаем из уже известного уравнения (4.1) соотношение (4.2), если будем считать, что функции распределения (F_{nc}) для функциональных групп в скелете матрицы фенетидина подчиняются соотношению Пуассона-Смолуховского, а вклад, результирующей функции есть величина аддитивная от составляющих эффектов, т.е. $y = y_a + y_{\pi} + Y_{\tau}$:

$$Y = -Y_0 RLn \frac{\lambda^n \cdot e^{-\lambda}}{n!} (4.1)$$

где Y_o —относительная постоянная интенсивности эффекта, которая принимается равной 1/2 при условии, что веществу

ряда фенетидина соответствует равновесие между скелетом (С) и совокупностью функциональных групп (Ф), когда СФ \Leftrightarrow С + Ф; п — число функциональных групп в скелете матрицы вещества, а λ — область флуктуации функциональных групп или пар коллективизированных, локализованных электронов в функциональных группах таким образом, что по величине λ можно судить о величине, показывающей, во сколько раз объем матрицы скелета больше объема флуктуирующих в ней функциональных групп, R—газовая постоянная в э.е.:

$$Y = -Y_0 R Ln F_{IC}^a - Y_0 R Ln F_{IC}^{\mathscr{H}} - Y_0 R Ln F_{IC}^m (4.2)$$

т.е. имеет место принцип аддитивности вклада в результирующую составляющую.Откуда имеем:

$$Y = -\frac{3}{2} RLn \frac{\lambda^n \cdot e^{-\lambda}}{n!} (4.3)$$

Из анализа такой функции следует, что наблюдаемые результирующие эффекты величины Y, имеющейся в пределах 1, 2, 3, 4, имеют место при следующих обстоятельствах.

При числе функциональных групп, стремящихся к нулю, т.е. n= 0, а $\lambda \rightarrow 1$. интенсивность эффекта Y = 3. При n \rightarrow 1, когда $\lambda \rightarrow 0.4$, т.е. объем функциональных групп в 2,5 раза меньше объема скелета матрицы, активность веществ ряда фенетидина У-» 3,92, т.е. высокой активности. При n \rightarrow 0 и λ =0,4 величина результирующего эффекта активности Y \rightarrow 1,19, т.е. практически отсутствует, что и наблюдается экспериментально во всем объеме проведенных исследовании.

Компьютерное моделирование физико-органической природы действия снотворных и седативных средств

В настоящей работе при выявлении физико-органической природы действия снотворных и седативных средств, т.е. при определении длительности действия на организм как функции молекулярной массы скелета (Мс), состава функциональных групп и числа коллективизированных (N^к), локализованных (N^л) электронов функциональных групп седативных и снотворных средств использовалась методика компьютерного экспери-мента.

В качестве эмпирического материала для создания модели использовались химии данные по синтетических лекарственных веществ Дайсона и Мея, для которых в этой работе даны подробности химического, физикоорганического действия и длительности воздействия на организм, в частнос-ти, снотворных и седативных веществ. Для прогнозирования по данным длительности действия (Ув часах) снотворных и седативных средств строилась матрица, аргументы которой с X1 по X29 включали в себя: X1 молекулярная масса скелета седативного или снотворного вещества; Х₂ — Х₅ — числа коллективизированных и локализованных электронов, а также их произведение на молекулярную массу скелета; Х₆ — Х₂₄ — наличие различных функциональных групп; Х₂₅ — Х₂₉— общая молекулярная масса функциональных групп, число коллективизированных и локализованных электронов в них и произведение молекулярной массы функциональных групп на число указанных электронов соответственно. Вид используемой матрицы представлен в табл.5.1. Как показыва-ют результаты моделирования У, т.е. длительности действия снотворных и седативных веществ как функции влияния всех без

исключения аргументов X₁ — X₂₉, коэффициент корреляции модели достигает 92%, а максимальная относительная ошибка не превышает 6,5 отн.%.

Таблица 5.1

Классификационная матрица длительности действия снотворных и седативных средств как функция аргументов Х

Соединение	X_1	X.,	X.,	X4	X_1	Количество	
	Me	N ^K _c	Ν ^π ε	M ^K _c N _c	M _c N ⁿ _c	различаных функцио- иальных групп X ₆ -X ₂₄	
1. Аллобарбы сон	125	21.10	22.90	2658.6	2885.4	X2	
2. Алурат	125	21.10	22,90	2658,6	2885.4	$X_1 - 1$	
10 March 10	1.1					X_{r-1}	
3. America	126	21.10	22,90	2658.6	2885,4	$X_{1} - 1$	
						$X_{10} = 1$	
4. Барбитон	126	21.10	22,90	2658.6	2885.4	X2	
5. Винбарбитал	125	21.10	22,90	2658.6	2885,4	$X_{1} = 1$	
						$X_{-1} - 1$	
б. Гексения	126	21,10	22,90	2658.6	2885,4	XI	
						$X_{i2} = 1$	
7. Гаксобарбитон	1.26	21.10	22,90	2658,6	2885,4	$X_{4} = 3$	
8. Дельвинал	140	26,25	23,75	3675,0	3325,0	$X_{1} = 1$	
						$X_{12} = 1$	
9. Дормоват	126	21,10	22,90	2658,6	2885,4	$X_{*} - 1$	
						$X_{14} = 1$	
0. Hapaa	126	21,10	22,90	2658,6	2885,4	$X_{1} = 1$	
						$X_{g} - 1$	
I. Нарконумал	140	25,25	23,75	3675.0	3325.0	$X_{*} = 1$	
						$X_{q} = 1$	
Z. Heottan	126	21,10	22,90	2658,6	2885,4	$X_1 - 1$	
						$X_{14} = 1$	
3. Howtra	126	21,10	22,90	2658,6	2885,4	$X_{p-1} = 1$	
						$X_{12} = 1$	
. Herrorali	142	21,20	22,80	3010,4	3251,8	$X_i = 1$	
					and the second	X22-1	
5. Elposentaz	140	26,25	23,75	3675,0	3325,0	X, ~1	
		 for all 1 	100 TO	and a	1 march 1	X10-1	
b. Dponosan	1.26	21,10	22,90	2658,6	2855,4	$X_{20} - 2$	
L. Pytosian	126	21,10	22,90	2658,6	2885,4	$X_{d} - 1$	
		The second	-	- second 1	- Constant	$X_{1,s} = 1$	
 Cascouran 	126	21,10	22,90	2658,6	2885,4	$X_{i} = 1$	
						$X_{1,2} = 1$	

Решение же задачи на ЭВМ в рамках моделирования величины длительности действия снотворных и седативных средств У как функции необходимого и достаточного числа наиболее аргументов простую позволило выявить зависимость в форме линейной регрессии, при этом параметров, включенных количества в модель, (коэффициент ограничивается восемью аргументами

56

корреляции модели достаточно зысок - 84,7%, максимальная ошибка в определении величины У составляет 12отн.%).

В вычислительную модель (5.1) оказались включенными следующие аргументы с коэффициентами регрессии a_i и свободным членом уравнения B = 50,46492:

$$Y = \sum_{i} a_i x_i + B(5.1)$$

Параметр Коэффициент Параметр Коэффициент

1	-0,26001	14	-2,81455
26	-0,23486	13	-2,54384
15	-4,47390	20	1,19939
8	-1,28291	16	2,39877

Вклад включенных параметров, рассчитанный методом исключения для аргументов X_i составляет, %: 1 - 20,3; 26 -15,0; 15 - 12,2; 8 - 11,1; 14 - 11,4;13 - 10,0; 20 - 9,9; 16 - 9,9. Из полученных результатов следует, что два аргумента - Х-1 и Х₂₆, - вносят в модель вклад в количестве 35%, а 65% приходятся на остальные б аргументов, что составляет в среднем 11%. При этом, как показывают результаты моделирования (табл.5. 2), наблюдается удовлетворительное совпадение между теорией и экспериментом. Таким образом, физикоорганическая природа длительности действия снотворных веществ может быть описана на основании полученного на ЭВМ правила, что позволяет практически подойти к оптимизации синтеза снотворных веществ путем вариации найденных аргументов в пределах исследуемых классов органических соединений.

Однако понимание физико-химической природы действия снотворных и седативных средств может быть достигнуто развития представлений об энтропийнопутем статистической природе молекулярного каркаса исследуемых (X_1) И веществ характере влияния числа коллективизированных электронов (Х₂₆) функциональных групп седативных и снотворных средств.

Если полагать, что действие снотворных и седативных средств в нейронной сети уподобляется действию газа²² по аналогии с представлениями осмоса по Вант-Гоффу, то энтропия такого газа может быть вычислена по формуле, аналогичной формуле Закура—Тетроде:

$$S = nRLnT + RLn\frac{M}{d} \cdot 10^{-2} - RLn\frac{\lambda \cdot e^{-\lambda}}{n!}$$

где *n* — число функциональных групп; *M*, *d* — молекулярная масса, плотность седативного, снотворного средства; λобласть распределения функциональных групп в матрице скелета снотворного, седативного вещества.

Сощинано	XII	#X2 +	X2 11	X _{2.8}	Xis	Y, 4	
	MR	NR	NR	MRNR	MRNR		
1. Аллобарбитон	82	28,40	7,60	2328,8	623,2	8	
2. Алурат	84	31,45	6.55	2641.8	650,2	8	
3. Амития	100	39,20	6,30	3970.0	630,0	8	
4. Барбитон	58	24,10	3.90	1397,8	226,2	12	
5. Винбарбигал	98	36,65	7.35	3591.2	720,3	8	
 Гексетал. 	.114	44,90	7,10	5118,6	809,4	8	
7. Гексобарбятон	96	35,25	6.75	3384,0	648.0	1	
S. Destations	98	36,65	7,35	3591,2	720.3	- 8	
9. Дермовит	124	39,30	12,70	4873,2	1574,8	4	
0. Играл	72	29,30	14.10	2109,6	1058,4	12	
1. Нарконумал	84	\$1,45	6.55	2641,8	550,2	8	
2. Heoman	86	34,50	5,50	2567,0	473,0	12	
3. Ноктял	163	31.80	12.20	5183,4	1988,6	8	
4. Пентотал	100	39.70	6,30	3970,0	630,0	4	
5. Промитал	106	34,20	9,80	3625,2	1038,8	4	
б. Проговал	86	34.50	5.50	2967.0	473.0	12	
7. Ругоны	92	29,00	9.00	2668.0	828.0	12	
8. Caugeman	58	36,65	7,35	3591.2	720,3	8	

Таблица5.1 (окончание)

²² .Rashevsky N.Mathematical Biophysics.Physicomathematical Foundation of Biology.N.Y., 1959.-p.133.

Таблица2

Сравнение результатов расчетов длительности действия снотворных и седативных средств (Ү, ч) как функции необходимого и достаточного числа аргументов модели с экспериментальными данными Дайсона и Мея*.

Nº coen.	2	Расчет	Ошибка	Nº coeg.	Υ	Расчет	Ошибка
1	8,000	8,468	-0,468	14	4,000	4,220	-0,220
2	8,000	9,035	-1,035	15	4,000	6,031	-2,031
-3-	8,000	8,380	-0.380	16	12.000	12,00	0,000
4	12,000	12,044	-0,044	17	12,000	10,893	1,107
3	8,000	9,096	-1,096	18	8,000	7,813	0,187
6	8.000	7,159	0.841	19	4.000	6,592	-2,592
1. 64	4,000	6,611	-2,611	20	8.000	7,793	0.207
8	8,000	8,000	0,000	21	8,000	6,592	1,408
9	4,000	4,030	0,000	22	4,000	\$.511	-1.511
10	12,000	10,822	1.178	- 23	12,000	9,672	2.328
11	8.000	3,394	2,605	24	8.000	5,389	2,611
12	12,000	12,000	0,000	2.5	8,030	7.637	0.363
13 .	8,000	10,235	-2,235	26	8,000	8,016	-0.016
			1986 -	27	8,000	6.595	1.405

•Нумерация веществ соответствует таковой в табл.5.1

Тем самым энтропия седативного, снотворного средства, возрастая с увеличением молекулярной массы каркаса, числа и характера распределения функциональных групп, их коллективизированных электронов в структуре скелета вещества, приводит к увеличению торможения нейронной сети. т.е увеличению длительности действия снотворного, седативного среда. К аналогичному утверждению об увеличении энтропии веществ и процессов с увеличением их молекулярной массы в свое время пришел Н.И. Кобозев в теории энтропийных правильностей²³.

²³ .Кобозев Н.И. Избранные труды.М.; МГУ.-1978.-т.2.-с.241-281.

Физико - органическая модель и статистическая достоверность функциональной синэргизма действия душистых веществ и анальгезирующих, седативных средств

Впервые получена модель физико-органического механизма функциональной аналогии действия душистых веществ и аналыгезирующих, седативных, снотворных средств. На осно-вании статистического анализа выявлены условия приемле-мости выбранных моделей интенсивности действия снотвор-ных, седативных и анальгезирующих средств и показано, что расхождение между эмпирическим и теоретическим материа-лом носит случайный характер. Аналогичная достоверность найдена и для модели классификации веществ. Теоретически душистых предсказаны и в компьютерном эксперименте обнаружены инварианты между средней линейной длиной молекул душистых веществ и молекул сгзативных. снотворных и анальгезирующих средств.

В предыдущих главах путем использования линейных компьютерных моделей показана возможность прогнозирования, с одной стороны, принадлежности веществ алифатического, карбоциклическою и ароматического ряда в зависимости от состава и строения функциональных групп к различным классам душистых веществ, а с другой - найдены необходимые и достаточные аргументы в описании интенсивности действия анальгезирующих и седативных средств как функции состава и электронного строения функциональных групп и матрицы лекарственных веществ. При этом доказана энтропийно-статистическая природа действия лекарственных средств в нейронной сети. Природа действия душистых веществ в нейронной сети описывалась осмотическим законом по аналогии с законом идеального газа Вант-

60

Гоффа в теории разбавленных растворов. Тогда в этом случае, естественно, энтропия распространения душистого вещества в нейронной сети будет аналогична закону изменения энтропии для разбавленных растворов, т.е. будет иметь место равенство

$$S = -RLnN$$
,

где N-мольная доля душистого вещества.

Поскольку природа действия в нейронной сети душистых веществ и лекарственных средств носит энтропийностатистический характер, а, как показывает компьютерный (Ул) эксперимент, разница между искомым И прогнозируемым (Ур) свойствами веществ достаточно мала, т.е. относительная ошибка невелика и коэффициент корреляции компьютерной модели близок к единице, то представляло интерес построение модельной аналогии между "работой" в нейронной сети душистых веществ и анальгезирующих, седативных средств, тем более что роль групп состава функциональных И числа ИХ коллективизированных, локализованных электронов является необходимым и достаточным условием в описании искомого свойства. Помимо построения такого рода эвристической модели аналогии действия душистых и лекарственных веществ, была бы желательна проверка ее статистической достоверности. Такого рода проверка может быть проведена в рамках статистического анализа разностей Ул - Ур = ДУ путем выявления этими методами статистических критериев²⁴ слу-чайности характера расхождения между эмпирическим распределением Ул и его теоретическими значениями Ур. Далее по выявленному

²⁴ .Хан Г., Шапиро С. Статистические модели в инженерных задачах. М.:Мир,1969; Шор Я.Б.Статистические методы анализа и контроля качества надежности .М.: Соврадио,1962; Рао С.Р.Линейные статистические методы и их применение.М.: Наука,1968.

статистическому закону распределения величин ΔУ, параметрам такого закона (среднее, дисперсия, асимметрия, эксцесс) и по нахождению ошибочного откло-нения гипотезы о выбранном законе распределения можно сделать заключение о близости таковых законов распределе-ния для душистых веществ и анальгезирующих, седативных средств.

I. Эвристическая модель. Пусть молекулы душистых (д) веществ, анальгезирующих (м) и седативных (с) средств в нейронной сети совершают колебания со средней линейной длиной (областью) $\lambda d \lambda h \lambda c$. Тогда на единичный импульс модельной среды ($\lambda d / \lambda m$)³ будем иметь:

где согласно сказанному Рм=1, а величина импульса молекул душистого вещества Рд пусть будет равна

Рд= $2\pi \cdot m \cdot \nu \cdot A \cdot \cos 2\pi \nu t$, (6.2)

Где m,v,A- масса, частота, амплитуда колебаний молекулы душистого вещества в нейронной сети. В какой -то начальный момент времени и при единичных значениях m,v,A имеем:

или

(\lambda \pi \lambda \mmmmmm) = (2\cdot \pi)^{1/3} (6.4)

т.е. среднее отношение линейных длин колебаний молекул в нейронной сети для душистого вещества и анальгезирующего средства есть инвариант: $a = (2 \cdot \pi)^{1/3}$.

Поскольку описание искомого свойства интенсивности дейст-вия седативных средств в нейронной сети связано с прояв-лением преимущественно роли в нейронной сети коллекти-визированных электронов функциональных групп (что определяется частотой колебания таких электронов, задаваемых в форме осцилляторов), то при сравнении отношения величин ($\lambda d/\lambda c$)³следует выбирать не отношение импульсов Рд и Рс, а величины их частот vд и vc. Причем для единичной частоты $v_c = 1$ величине vg должно

соответствовать колебание молекулы по трем координатам и времени, т.е. соотношение (6.1) в данном случае принимает вид

$$(\lambda \pi / \lambda c)^3 = 4 \cdot \nu \pi / \nu c \ (6.5),$$
 где
 $\nu_{\pi} = \frac{1}{2\pi} \sqrt{\frac{\gamma}{m}},$

ү– упругая постоянная. Тогда при величинах ү/т имеем

$$(\lambda d/\lambda c)^3 = 2/\pi (6.6)$$
 или
 $(\lambda d/\lambda c) = (2/\pi)^{1/3} (6.7)$

т.е. среднее отношение линейных длин колебаний молекул в нейронной сети для душистого вещества и седативного средства есть инвариант $a = (2 \cdot \pi)^{1/3}$.

Из соотношений (6.3), (6.4) и (6.6), (6.7) получаем, соответственно

$$(\lambda c/\lambda m)^3 = \pi^2 (6.8)$$

 $(\lambda c/\lambda m) = \pi^{2/3} (6.9)$

т-е. среднее отношение линейных длин колебаний молекул седативных и анальгезирующих средств в нейронной сети есть инвариант, равный $a = \pi^{2/3}$.

Периодический характер отношений величин λд, λм, λс позволяет для функций F(λд), F(λм), F(λc) написать преобразование Фурье в общем виде, например:

$$F(\lambda_{\mathcal{A}}) = \frac{1}{\pi} \int_{-\infty}^{\infty} F(\lambda_{p}) \cos(\lambda_{p} - \lambda_{\mathcal{A}}) d\lambda_{m} (6.10)$$

где *i* - это м или с. Тогда для любой функции: Уд, Ум, Ус, соответствующей искомому свойству с какой-то величиной периодического инварианта *a*, распространение импульса от душистых веществ, анальгезирующих, седативных средств будет соответствовать в нейронной сети импульсу с π -периодом.

II.Статистическая достоверность. Если инварианты *а* приведенных моделей (6.3), (6.4) и (6.6), (6.7) действительно имеют место, то они могут быть найдены путем обнаружения закона распределения величин Ул - Ур = Δ У для душистых, анальгезирующих и седативных средств, где величины λ в относительных единицах будут играть роль средних арифметических. Величины Δ У для седативных и анальгезирующих средств приведены, например, в табл. 6.1,6.2, а для 68 душистых веществ могут быть рассчитаны по методике²⁵. Тогда, используя программы математического обеспечения ЭВМ²⁶, удалось осуществить все необходимые расчеты.Ниже приводятся результаты расчета по этим стандартным программам.

Таблица6.1

Сравнение результатов расчета длительности действия снотворных и седативных средств как функции необходимого и достаточного числа аргументов модели с экспериментальными данными.

y coen.	Y#*	Yp	ΔΥ	Nº coqu.	Y**	Yp	ΔY
1	8,000	8,468	-0,468	2	8,000	9,035	~1,035
3 .	8,000	8,380	-0,380	- 4	12,000	12,044	-0,044
\$	8,000	9,096	-1,096	- 6	8,000	7,159	0,841
ġ	4,000	6,611	-2,611	8	8,000	8,000	0,000
9	4,000	4,000	0,000	10	12,000	10,822	1,178
11	8,000	5,394	2,606	12	12,000	12,000	0,009
13	8,000	10,235	-2,235	14	4,000	4,220	-0,220
15	4,000	6,031	-2.031	16	12,000	12,000	0,000
(2.16 - 17	12,000	10,893	1,107	18	8;000	7,813	0,187
19	4,000	6,592	-2,592	20	8,000	7,793	0,207
21	8,000	6,592	1,408	22	4,000	5,541	-1,511
23	12,000	9,672	7,326	124	8,000	5,389	2,611
25	8,000	7,637	0,363	26	8,000	8,016	-0,16
27	8,000	6.595	1.405				

Снотворные и седативные средства (табл. 6.1). Статистические результаты: критерий Бернштейна; отклонение от

²⁵.Бернштейн С.Н. Курс теории вероятности.М.-Л.:Гостехиздат,1946.

²⁶ .Сб.Математическое обеспечение ЕС ЭВМ(Пакет научных подпрограмм, ч.6).Минск, 1976.-вып. 10.

1- 0,300; закон распределения - Пуассона Шарлье: среднее 5,400, дисперсия 14,300, асимметрия 1,417, эксцесс -0.302.

Расхождение между эмпирическим и теоретическим распределением носит случайный характер; вероятность ошибочного отклонения гипотезы о выбранном законе распределения 0,118.

Тем самым выбранная ранее модель для расчета Ур (табл. 6.1) имеет смысл закона, так как расхождение между эмпирическим (Уд) и теоретическим распределением, т.е. величина У, носит случайный характер. Об этом свидетельствует критерий согласия Бернштейна, по которому чем ближе к единице, тем полнее согласие эмпирического распределения с теоретическим:

$$D = \frac{1}{s} \sum_{i=1}^{s} \frac{(m_i - m_i^0)^2}{m_i^0 (1 - m_i^0/n)} (6.11)$$

где m_i, m⁰_i -эмпирические и теоретические частоты по интервалам, на которые разбита область значений наблюдаемой случайной величины.

Таблица 2

Сравнение результатов расчета относительной анальгезирующсй активности Y средств

ряда петипина (аналог морфина) с экспериментальными данными

Анальгезирующие вещества (табл.6.2). Статистические результаты: критерий Бернштейна; отклонение от 1=0,300; закон распределения - геометрический: среднее 2,400, дисперсия 10,800, асимметрия 1,242, эксцесс -0,799.

Расхождение между эмпирическим и теоретическим распределением носит случайный характер. Вероятность ошибочного отклонения гипотезы о выбранном законе распределения 0,102.

Как видно из этих результатов, модель для расчета величины Ур (табл.6. 2) также имеет смысл закона в силу случайного характера расхождения между эмпирическим Уд и теоретическим распределениями, о чем свидетельствует критерий Бернштейна.

Однако для седативных и снотворных средств, в отличие от анальгезирующих веществ, статистический закон распределения величины ΔУ подчиняется закону Пуассона-Шарлье(6.12). Для анальгезирующих веществ характерен геометрический закон распределения(6.13):

$$P(n,\lambda_c) = \frac{\lambda_m^n}{2} \cdot e^{-\lambda} \left[1 + \frac{S^2 - \lambda}{\lambda^2} \cdot \frac{n(n-1)}{2} - \lambda \cdot n + \frac{\lambda^2}{2} \right] (6.12)$$

где λ с–область распределения(принимаемая равной среднему арифметическому), а S²-дисперсия, n=0,1,2...

$$P(n,\lambda_m) = \left(1 - \frac{1}{\lambda_m + 1}\right)^n \cdot \frac{1}{\lambda_m + 1} (6.13)$$

Тем не менее при сравнении параметров законов таких распределений (среднее — λ ; дисперсия - S^2 ; коэффициент асимметрии - A; коэффициент эксцесса (крутизны) кривой распределения - E) заметна довольно значительная близость в ходе самих кривых распределения, что вполне естественно, так как оба закона (6.12) и (6.13) математически выводятся из биноминального закона распределения, как и ранее использугуьа закон Пуассона-Смолуховского при варьировании лишь параметра λ . Тем самым сравнение величин λ — среднее для седативных и анальгезирующих средств - позволяет убедиться в справедливости предсказанного (6.8), (6.9)

соответствующего инварианта. Действительно, так как λ д = 5,400 и λ м = 2,400, то λ д/ λ м = 2.25 и λ с/ λ м =($\pi^{2/3}$)= 2,145027, что составляет всего 4,67% отн. опцибки.

Душистые вещества. Статистические результаты: критерий Бернштейна; отклонение от 1= 0,500; закон распределения — геометрический: среднее 4.533, дисперсия 36,981, асимметрия 1,425, эксцесс 1,288.

Расхождение между эмпирическим и теоретическим распреде-лениями носит случайный характер. Вероятность ошибочного отклонения гипотезы о выбранном законе распределения равна 0,335, что также свидетельствует о выбранной модели приемлемости в теоретической классификации душистых веществ Ур, расхождение которой с эмпирическим распределением носит случайный характер. Приемлема также для оценки и вероятность ошибочного отклонения гипотезы о выбранном законе распределения. А найденный параметр среднего для душистых веществ λд=4.533 позволяет рассчитывать значения соответствующих инвариантов (6.4) и (6.7) по статистическим данным, свидетельствующим о достоверности используемых моделей интенсивности действия анальгезирующих и седативных средств в нейронной сети. Действительно, если $\lambda g = 4,533$ и $\lambda M = 2.400$. то $\lambda I / \lambda M = 1.88875$ и $\lambda I / \lambda M = (2 \cdot \pi)^{2/3} = 1.845286$. что составляет всего 2,30% отн.оннибки. Если же $\lambda g = 4,533$ и $\lambda c =$ 5,400, $\lambda g / \lambda c = 0.8394444$ или $\lambda g / \lambda c = (2 \cdot \pi)^{2/3} = 0.860253$, что составляет 2,48% отн. ошибки. Из изложенного выше следует, что аналогия действия в нейронной сети душистых веществ в анальгезирующих и снотворных средств не является случайной, а заложена в своеобразном физико-органическом механизме такого лейст-вия.

Физико - химические, компьютерные модели расчета канцерогенов, канцеролитов и синэргизм явления

Проблама канцерогенеза как синтетического явления "механизмов действия", заложенных на информационном уровне в кинетике размножения простых и сложных прототипов, рассматривается с самых разных позиций в физической, квантовой химии. биофизике, биохимии. биологии. проблемах машинного моделирования, по-видимому, еще баз должного сущностного выделения механизмов явления, которые могли бы быть подвергнуты расчетам, во-первых, с позиции такого общего метода, как матод физической химии, а во-вторых, метода компьютерного моделирования, когда, статистичес-кий подход позволяет судить о достоверности механизма явле-ния, способах ускорения или торможения фармако-кинети-ческими путями. Действительно, энтропия информации каталитических систем и термодинамические факторы в кинетике автокаталитического размножения простых и сложных прототипов²⁷, кинетике анализа экспериментальных опухолевых процессов²⁸, квантово химические расчеты в изучении противоопухолевих соединений²⁹, молекулярные и клеточные механизма

²⁷.Кобозев Н.И.,Страхов Б.В.Энтропия информации каталитических систем//4-й Межд. Конгресс по катали-зу.М.:АН СССР,1968.Препринт № 72.с.1-16;Кобозев Н.И.Термодинамические факторы в кинетике автокаталитического размножения простых и сложных прототипов//Ж.физ. химии,1962. т.26. №1, с.21-31.

²⁸.Эмануэль М.Н. Кинетика экспериментальных опухолевых процессов.М.,Наука,1977.

²⁹ .Лужков В.Б.,Богданов Г.Н.Квантово - химические расчеты в изучении противоопухолевых соединений//Успехи химии. 1986. т.55, №1, с.3-28.

размножения прототипов³⁰, построение мысленных и компьютерных моделей анализа связи хими-ческой структуры и биологической активности³¹ - вот отчасти перечень проблем, затрагиваемых при описании явлений размножения простых и сложных прототипов, квалифицируемых как злокачественные (раковые) образования, приводя-щих к перерождению эпиталиальной, нервной или мышечной такни на микро - и макроуровнях.

В связи с этим возникает естественный вопрос: возможно ли такое построение расчетных моделей физической химии и **машинного** анализа, которые бы в каждом конкретном случае давали не только общее, но частное указание о причинах канцерогенеза на молекулярном, клеточном, гистологическом уровнях и указывало путь конструирования физиологически эффективных, доступных и необходимых средств, приводящих к естественному торможению явления злокачественного новообразования фармако-кинетическим путем тех случаях, когда фармако-средство (ФК) путем

³⁰.Ландау М.А. Молекулярные механизмы действия физиологически активных веществ.М.: Наука,1981; Биофизика рака// Под ред. М.Н.Эмануэля.Киев:Наукова Думка,1976; Журнал ВХО им. Д.И.Менделеева (номер посвящен молекулярной природе рака),1986,№3, с.241-347;

³¹.Рашевский Н.Некоторые медицинские аспекты математической биологии, М.:Медицина, 1966; Стьюпер Э., Брюггер У., Джкрс П. Машинный анализ связи химической структуры и биологической активности.М.:Мир, 1982; Розенблит А.Б., Голендер В.Е. Логико - комбинаторные методы в конструировании лекарственных веществ. Рина:Зинатне, 1983; Васильев С.С.Значение циклизации свободной энергии в био -физико - химических системах//Термодинамика биологичес-ких процессов. М.:Наука, 1976. с. 205-219.

кинетического воздействия на биополимер (БП) через сывороточный альбумин человека (САЧ) избирательно воздействует на структуру животной клетки (ЖК) через ее ядро I, плазматическую 2 и внутриклеточные мембраны 3.. Тем самым фармако-вещество способно оказывать экспрессию на генетическую информацию клетки только в тех случаях и до тех пор, если оно не теряет своей активности на всех предыдущих стадиях кинетического превращения. Только в этом случае можно говорить о сохранении активности канцерогена или канцеролита, т.е. учитывать явление от микро- до макроуровня. Тем самым даже активный канцероген, канцеролит (КК), претерпевая существенные в том чиога и химические превращения по схеме: ФК \rightarrow БП \rightarrow ФКПБ \rightarrow САЧ \rightarrow ЖК, может как активировать, так и полностью дезактивировать рост прототипов, в том числе и за счет различных форм тран-сформации свободной энергии в био-физико-хвмических системах мышечной, эпителиальной и нервной тканях, когорые сами по оеба представляют своего рода структурные биологические ансамбли, в которых и имеет место циклизация свободной энергии по С.С. Васильеву. Можно выделить, используя физико-химический метод, несколько моделей и механизмов действия веществ типа канцероген, канцеролит (КК), к которым могут быть отнесены как неор-ганичеокче соединения, так и органические, в том числе биологические материалы (типа онкогенов, ретровирусов), в ходе своего действия на животную клетку (ЖК) посредством факторов роста (ФР), образующих с рецептором комплексы, агрегаты со счетным числом субъединиц на разных стадиях клеточного цикла. С другой стороны, если модели и механизмы необходимы и описывают существенные стороны действия канцерогена, канцеролита на биологический материал клетки, то,по крайней мере, кинетика и термодинамика этих явлений, дополненные компьютерными моделями расчета физиологической активности КК как функции их состава, электронного

строения, позволяют говорить о достаточном числе факторов в форме химических связей и состава КК, подлежащих переработке в ЖК, совмещающей и механизм, и машину.

1.Модели и механизм действия фармако-средства(ФК) на биополимер(БП) и сывороточный альбумин человека (САЧ)

Не подвергается сомнению возможность взаимодействия ФК о БП, в том числе и в присутствии САЧ с образованием комплекса ФКБП по условию равновесия:

Φ К + БП \Leftrightarrow ФКБП (7.1)

Тогда, по крайней мера при значении отопени диссоциация α, для ФКБП и концентрации ФК и БП, равной С, можно записать конотанту равновесия:

$$K = \frac{\alpha C \cdot \alpha C}{(1 - \alpha)C} (7.2)$$

которая при величинах α<<1, позволяет получать закон Оствальда:

$$\alpha = k\sqrt{K/C} = k\sqrt{KV}(7.3)$$

где V - объем разбавления ФКБП. Физиологическая активность (Fa) КК тем выше, чем сильнее равновесие смещено в сторону образования только ФК из ФКБП, поэтому имеем:

$$F_a = k \cdot \alpha = k \cdot \sqrt{KV}(7.4)$$

Из (7.4) следует нетривиальный вывод: физиологическая активность фармакосредства (ФК) тем ваше, чем сильнее его разбавление. С точки зрения гомеопатии такой вывод не явля-ется неожиданным, а, наоборот, служит физико - химическим обоснованием метода гомеопатии в противовес доводам алло-патии.

Модель переноса сывороточным альбумином человока (САЧ) фармакосредства (ФК) заданной степени дисперснгости определяется молекулярным весом М, удельным объемом раствореннного вещества, т.е. объемом разбавления V, вязкостью САЧ η, что и определяет D -коэффициент диффузии ФК в САЧ, который связан с величинами- M , $\,V,\eta$ - соотношенем Герцога^{32} :

$$D = \frac{inv}{n^{3}\sqrt{MV}} (7.5)$$

а для водных растворов это соотношение принимает вид:

$$D = \frac{2,266}{\sqrt[3]{MV}} (7.6)$$

Полагая в простейшем линейном случае, что физиологическая активность F_a - переноса ФК в САЧ связана о процессом переноса как тепла, т.е. температуропроводностью среды о коэффициентом а , так и диффузией ФК в САЧ о коэффи-циентом диффузии D , можем записать систему уравнений, соответственно, для $F_a(x, t)_D$, и $F_a(x, t)_a$ в форме:

$$\frac{\partial F(x,t)_D}{\partial t} = D \cdot \frac{\partial^2 F(x,t)_D}{\partial x^2}$$
$$\frac{\partial F(x,t)_a}{\partial t} = a \cdot \frac{\partial^2 F(x,t)_a}{\partial x^2} \quad (7.7)$$

Объединенное решение системы уравнений (7.7) может быть получено путем введения универсального критерия (Ку) как отношения критериев Фурье для температуропроводности (F_0 =at/x²) и диффуэии (F_0^1 =Dt/x²) в форме:

Ку=D/а (7.8)

где D/a есть безразмерная величина. Тогда обобщенная физиологическая активность $F_a^{\ 1}$ = $F^1_0(x,t)_D/F_0(x,t)_a$ для совместной системы уравнений (7.7) может быть записана в форме:

$$F_a^1 = \operatorname{erf} \frac{1}{2 \cdot \sqrt{K_y}} (7.9)$$

т.е. представляет собой интеграл Гаусса от универсального критерия Ку. Разложение же в ряд этой величины приводит к формуле по данным И.И.Котюкова (с.171) удобной для расчета на калькуляторе:

³². Котюков И.И.Физическая химия.Томск:ТГУ,1930,с.174-175.
$$F_a^1 = \frac{8}{\pi^2} \left(e^{-\pi^2 \cdot Ky} + \frac{1}{9} e^{-9\pi^2 \cdot Ky} + \frac{1}{25} e^{-29\pi^2 \cdot Ky} \dots \right) (7.10)$$

Тем самым обобщенная физиологическая активность взаимодействия ФК с САЧ есть функция универсального критерия Ку, т.е. зависит только от температуропроводности и вязкости фазово-дисперсной системы ФК - САЧ, молекулярного веса и удельного объема переносимого фармакологического средства:

$$K_{y} = \frac{inv}{a \cdot \eta \sqrt[3]{MV}} (7.10)$$

Только для условия (7.8), когда сечения: $x_a^2 \approx x_D^2$ и $t_a \approx t_D$, обобщенная физиологическая активность не зависит от геометрии среды и времени. Однако в тех случаях, когда на систему накладываются более сложные граничные условия, имеет смысл проводить отдельные расчеты для каждого из уравнений системы (7.7).

2. Механизм взаимодействия фармакологического средства (ФК) с животной клеткой (ЖК)

Пусть имеет место равновесие во взаимодействии ФК с ЖК:

 Φ К + ЖК $\Leftrightarrow \Phi$ КЖК_i (7.11)

где i= 1, 2, 3, 4 означает, что взаимодействие ФК происходит с плазматической мембраной 2, внутриклеточной средой 4, внутриклеточными мембранами 3, ядром клетки 1.

1. Рассмотрим континуалыый механизм линейной диффузии ФК в плазматичеокуп момбрану 2, т.е. ЖК₂. Диффузия из бесконечно тонкого слоя ФК в слой плазматической мембраны описывается обычно³³ (с.44) уравнением:

$$F_{a_2} = \frac{C}{Q} = \frac{1}{2\sqrt{\pi Dt}} \cdot exp(-\frac{x^2}{4Dt})(7.12)$$

³³ .Райченко А.И.Математическая теория диффузии в приложениях.Киев: Наукова Думка, 1981.

где С- концентрация ФК, диффундирующего в слой плазматической мембраны ЖК₂, Q- количество диффузанта. Учитывая явление температуропроводности с коэффициентом данной среды и принципы построения аналогичных моделей, изложенные в предыдущем разделе в соответствии с (7.10) записать выражение для физиологической активности F_{a2} в форме:

$$F_{a_2} = \frac{1}{2\sqrt{\frac{\pi inv}{a\pi^{\frac{3}{3}MV}}}} \cdot exp(-\frac{\alpha\pi^{\frac{3}{3}MV}}{4 \cdot inv})(7.13)$$

2. В отличие от континуального механизма взаимодействия ФК + ЖК₂ ⇔ ФКЖК₂ механизм взаимодействия с внутриклеточной средой, размер которой значительно больше толщины слоя плазматической мембраны, позволяет рассматривать процесс ФК + ЖК₄ ⇔ ФКЖК₄ с позиции дисконтинуальной теории, которая приво-дит (с.47) к соотношению:

$$\frac{dN_a}{dt} = -k_n N_n + \frac{k}{2} (N_{n-1} + N_{n+1})(7.14)$$

где N_n - концентрация, т.е. количество n - атомов ФК в момент времени t в ЖК₄; k_n = 2D/r²; r² - сечение диффундирующих частиц с начальными условиями: $N_n = {}^N_0{}^{(n=m)}$, $_{0(n\neq m)}$. Тогда решение (7.14) будет иметь вид:

$$F_{a_4} = \frac{N_n}{N_0} = e^{-k_n t} \cdot J_{n-m}(k,t), n = m = 0, 1, 2, (7.15)$$

где J_{n-m} - модифицированная функция Бесселя первого рода порядка (n-m). Расхождение между (7.13) и (7.15) имеет место при $k_n t \angle (n-m)$, а при $k_n t >> (n-m)$ решение (7.13) и (7.15) близки между собой. Частным случаем (7.15) является важное решение вида:

$$F_{a_4} = \frac{(k_m t)^m}{m!} e^{-k_m t} (7.16)$$

когда предел каждого члена (n-m)/m(m=0,1,..., n-1) составляет:

$$\lim_{n\to\infty}\frac{n-m}{m}=1$$

для числа броунизирующих частиц n,m, из которых образуют счетное число субъединиц химически взаимодействующих с внутриклеточным веществом ЖК₄ под действием, например, факторов роста(Ландау М.А., стр.260-265).

При этом квадрат среднеквадратичного смещения $|\Delta x|^2$ будет равен $|\Delta x|^2 = k_m \cdot t = 2Dt$. Тем самым в отличие от континуальной диффузии ФК в плазматическую мембрану взаимодействие ФК о внутриклеточным веществом протекает по механизму обра-зования ансамблей (комплексов) с ограниченным числом субъединиц.

3. Перенос ФК во внутриклеточные мэмбраны ЖК₃, т.е. механизм явления ФК + ЖК₃ ⇔ ФКЖК₃ , следует рассматривать как процесс диффузии в область с подвижными границами и краевыми условиями, содержащими градиент концентрации:

C(x,0)=0 (x>0)

 $\partial C/\partial x \mid_{x=0} = -Q\delta(t), c(\infty, t) = 0$ (7.17),

где δ (t)-дельта функция. Тогда при скорости v движения границы x¹=x-vt уравнение диффузии имеет вид:

$$\frac{\partial C}{\partial t} = D \cdot \frac{\partial^2 C}{(\partial x')^2} + v \cdot \frac{\partial C}{\partial x'} (7.18)$$

решение которого имеет вид при х=0:

$$F_{a_{3}} = \frac{c(0,t)}{Q} = \left\{ \frac{exp(-\frac{v^{2}t}{4D})}{\sqrt{\pi Dt}} - \frac{v}{2D} \operatorname{erfc} \frac{v}{2} \sqrt{\frac{t}{D}} \right\} (7.19)$$

где имеет место обозначение $\mathrm{erfc}\phi$ =1- $\mathrm{erf}\phi$ для любой функции ϕ = v/2 · \sqrt{t}/D .

4. Модель переноса ФК через плазматическую мембрану в ядро ФК + ЖК₁ ⇔ ФКЖК₁ разумно рассматривать как процесс диффузии из одной среды в другую через высокопроницаемую третью среду,что происходит при граничных условиях:

$$C_1(x,0)=C_0$$
, $C_2(x,0)=0$

$$D \cdot \frac{\partial C_1}{\partial x}\Big|_{x=0} = \alpha \cdot \left[C_1(0,t) - C_2(0,t)\right]$$
$$D \cdot \frac{\partial C_2}{\partial x}\Big|_{x=0} = \alpha \cdot \left[C_2(0,t) - C_1(0,t)\right] (7.20)$$

где C₁(x,t); C₂(x,t)-концентрации в первой и второй средах, соответственно; α -коэффициент индукции из одной среды в другую(например, передача митогенного сигнала, генерированного на этапе связывания ФК с ЖК₂ в ядро).Суммарная физиологическая активность ядра, воспринимающего диффузант ФК (фармакологическое средство, онкоген, канцеролит, радиоактивный изотоп и т.п.), записывается в виде ([33], стр.74):

$$F_{a_1} = \frac{C_0 \cdot D}{\alpha} \left[\alpha \cdot \sqrt{\frac{t}{\pi D}} + \frac{1}{4} exp \frac{4 \cdot \alpha^2 \cdot t}{D} \cdot erfC(2 \cdot \alpha, \sqrt{\frac{t}{D}}) - \frac{1}{4} \right] (7.21)$$

Разобранные модели и механизмы F_{a1}, F_{a2}, Fa₃, F_{a4} физиологической активности не только могут служить способом их аналитической проверки путем проведения соответствующих расчетов по уравнениям в модельных реакциях, но позволяют усматривать причины локализации, например, соответствующих онкогенов при взаимодействии с животной клеткой как результат механизма и модели взаимодействия ФК с ЖК заданной физиологической активности F_{a1}, F_{a2}, F_{a3}, F_{a4} онкогена. Тем самым модели F_{a1} отвечает область локализации онкогенов:fos, myc, myb; F_{a2}: Ha-ras, bi-ras, erb B, abl, fgr, src, yes; F_{a3}: erb B, fus; F_{a4}: erb A, fes, mas, yes, fps, что фактически позволяет дать классификацию онкобел-ков не с позиции их структурной гомологии, а с позиции модели и механизма проникновения онкогена от природного хозяина в белок клетки, экспрессия которого в клетке является причиной ее ракового перерождения.

И далее, поскольку механизмы. и модели локализации ФК данной физиологической активности активности на основании полученных уравнений связаны с переносом молекулярной массы, которая избирательно характеризует

76

фактор роста(ФР), то можно полагать, что заданной величине переносимой массы соответствует вполне определенный механизм и модель физиологической активности Fa. В этом плане возможны следующие граничные условия: если молекулярная масса факторов роста(ФР) М>13,4 КДа, то имеет место модель F_{a1} ; М≤6.045 КДа - модель F_{a2} ; если 7,5 < М≤13,4 КДа, то F_{a3} ; если 6,045</bd>

Поэтому имело смысл в рамках построония физико-химических механизмов физиологичаской активности в системе $\Phi K \rightarrow B\Pi \rightarrow \Phi K B\Pi \rightarrow C A \Psi \rightarrow \mathcal{K} K$ не только рассмотреть причины, регулирующие активность канцерогена, канцеролита, но и попытаться построить соответствующие компьютерные моде-ли, которые бы позволили включить в рассмотрение такие величины физиологической активности вещества как моле-кулярный вес, так и формы химического взаимодействия меж-ду отдельными лигандами фармакологической среды, а также сами лиганды.

3.Компьютерное моделирование канцерогенов, канцеролитов

Как следует из предыдущего раздела, модели изменения физиологической активности действия канцерогена (канцеролита) сводятся к расчету механизмов переноса в континуальном (диффузионном) и дисконтинуальном (кинетическом) приближении явлений или химического взаимодействия между акпептором и рецептором - факторов, например роста или распада опухоли. В дисконтинуальном приближении, т.е. при броуновском движении отдельных частиц канцерогена, канцеро-лита, вопрос можно сформулировать и так: каково число членов ряда N, показывающее, во сколько раз скорости химических реакций в эпителиальной $v_{\rm a}$, нервной $v_{\rm h}$, мышечной $v_{\rm m}$ тканях отличаются от соответ-ствующих скоростей реакции $v_{\rm oh}$

протекающих в тканях, подвергнутих воздействии онкогена? Пусть эта величина сравнима с соотношением:

$$V_{3,H,M} = V_{0H}$$
 (7.22)

Тогда, если voн>> vэ,н,м, то при N≈ 0 1/ N→∞, т.е. граничные условия соотношения (7.22) просты:

Но так как N есть отношение скоростей реакций и, следовательно, их констант, то величину:

$$K_{oH} = 1/N = v_{oH} / v_{\mathcal{H},M}$$
 (7.24)

следует рассматривать только как К_{он} -константу равновесия процессов в нормальной и злокачественной опухоли.

Если процесс протекает по дисконтинуальному(броуновскому) механизму, т.е. его физиологическая активность F_{a4} определяется соотношением в офрме распределения Пуассона. Приэтом имеем:физиологическая активность, например онкогена, максимальна (F_{a4}→1), если (k_m·t)^m→0. Физиологи-ческая активность онкогена минимальна ($F_{a4} \rightarrow 0$), если ($k_m \cdot t$)^m $\rightarrow 1$ и k_m·t>0. Тогда число субединиц (лимитирующих стадий химического процесса) от m до N,химически взаимодействующих с внутриклеточным субстратом, может определяться суммой ряда, для которого $k_m {\cdot} t {\rightarrow} 1$ и который имеет вид:

$$k_m t = \sum_{m=1}^{N} \frac{1}{N(N+1)} \to 1(7.25)$$

Действительно, когда k_m·t=0.909, величина N есть счетная величина, равная N=10.Тем самым физиологическая активность действия канцерогена или канцеролита должна лимитироваться числом N - субъединиц химического процесса, простейшие(лимитирующие) стадии которого согставляют число аргументов функции F_a не более 10.

Достаточно элементарных 10 стадий химического взаимодействия канцерогена с внутриклеточной средой, чтобы скорость канцерогенеза была ниже скорости нормального функционирования животной клетки.В этом смысле оказывается, что канцерогенез есть естественный вероятностный процесс функционирования внутриклеточного состояния вещества до тех пор, пока число взаимодействия лимитирующих стадий химического с внутриклеточным веществом составляет онкогена величину, близкую N=10.Таким образом, онкогенез есть своего рода машина, "часы" которой успевают реализовать число лимитирующих стадий химического взаимодействия в ЖК или большее, или меньшее N=10.

Такой результат представляется возможным проверить на примере компьютерного моделирования некоторого статистически опробованного в клинической практике множества как канцерогенных веществ, так и канцеролитов, тем более, что имеются достаточные выборки для таких веществ и в руководствах, и в энциклопедиях³⁴. Они и были использованы в банке канцерогенов, канцеролитов, компьютерное моделирование которых как функции молекулярного, функционального состава, коллективизированных, локализованных, остовных состояний электронов в химической связи соединений (модель КЛОП³⁵) осуществлялась в соответствии с принципами построения моделей объектов управления и показало хорошие результаты не только в тех разделах, главы которых приведены выше, но и, например, при анализе

³⁴ .Краткая химическая энциклопедия.М.:СЭ,1963.т.2.с.398-406.

³⁵.Ким А.М.,Кутолин С.А. Теория КЛОП и компьютерное моделирование свойств органических соединений. Новосибирск: НГПИ,1992.

эффективности алкил-, арилзамещенных фенольных стабилизаторов³⁶.

Расссмотрим закон, приведенный для F_{a4} как обыкновенное каноническое распределение Гиббса спараметрами:

$$F_{a_4} = \lambda \cdot e^{-\lambda} (7.26)$$

где $\lambda = k_m \cdot t$. В этом случае такая броуновская система может рассматриваться как обратимая и для искомого свойства канцерогена(канцеролита) имеем:

$$\ln F_{a4} = \ln \lambda - \lambda (7.27)$$

Уравнение (7.27) для суммы N реакций в общем случае можно записать так:

$$LnF_{a_4} \cong \sum_{N} \alpha_N \cdot \lambda_N + B_N(7.28)$$

Тогда в компьютерном эксперименте поиска многофакторной модели, содержащей N-необходимых и достаточных аргументов, лимитирующих активность процесса, может быть найдена(если она есть!) функция Y_N:

$$Y_N = \sum \alpha_N \cdot \lambda_N + B_N (7.29)$$

Если разница между модельными представлениями (7.28) и(7.29), выраженная как:

$$LnF_{a_4} = Y_N + \Delta Y_N(7.30)$$

случайна(критерий Бернштейна, например, меньше единицы), то модель (7.29) есть закон,описывающий $\ln F_{a4}$. Рассмотрим несколько конкретных примеров.

1.В основу компьютерного эксперимента была положена матри-ца(табл.7.1), где в качестве функции $\ln F_{a4}$ использовалась экспериментальная величины (Y_э) различных типов канцерогенных веществ с заданной относительное актив-

³⁶ .Ким А.М. и др.Компьютерное моделирование и прогнозирование ингибирующей активности алкил-, арилзамещенных бисфенолов: Деп.ВИНИТИ, 1989.№ 154-XII.89.

ностью. В качестве аргументов (N) элементарных реакций ЖК и онкогена использовались значения молекулярной массы скелета(M^c), радикалы (M^R) антраценовых соединений и их производных на число коллективизированных(N_{кол}) и локализованных (N_{лок}) электронов скелета и радикала, т.е. соответственно $N_{\text{кол}}^{c}$, $N_{\text{лок}}^{c}$ в форме: X_2 = M^c; X_3 = $N_{\text{кол}}^{c}$; X_4 = $N_{\text{лок}}^{c}$; X_5 = M^R; X_6 = $N_{\text{кол}}^{R}$; X_7 = $N_{\text{лок}}^{R}$; X_8 = M^c $N_{\text{кол}}^{c}$; X_9 = M^c $N_{\text{лок}}^{c}$; X_{10} = M^R $N_{\text{кол}}^{R}$; X_{11} = M^R $N_{\text{лок}}^{R}$;

В результате проведенного окмпьютерного эксперимента найдена зависимость вида(7.29) с коэффициентом корреляции модели 0.827.Количество необходимых и достаточчных аргу-ментов минимального числа элементарных химических про-цессов, определяющих активацию онкогенеза канцеро-генами данного состава оказалось действительно равным N< 10, а именно N=7.Количество аргументов, включенных в модель У_{расч}:

Параметр	Коэффициент
5	-0,02606
6	0,22917
3	0,05753
10	-0,00090
4	0,11064
7	-0,07585
11	0,00112

Таблица 7.1

Матрица канцерогенных веществ для компьютерного эксперимента.

1.1		6. T														+
5 Î.;	TOR	.80	8	.60		12.3	8	,60	8.	.30	8	8				
XII	12	0280	E22	090		078	BE	090	II2	1960	IO37	TOT				
	203	8	8	9		13	8	40	8	8	R	8				
XTO.	- 20	863.	452.	863.		396,	400,	863,	452,	426,	28	640				
-		8	03	8		8	8	8	8	8	88	2				
go	of	.40	8.	8		.80	8	8	8	8	.30	R				
P	0.M	2930	2775	2659		2608	4830	1450	1285	I395	2775	1505	1. m 1. m			
	N.	8	R	R		8	8	8	8	88	R	8				
Ye	OM	186	BI6,	274		986	Res.	800	006	492,	3I6,	038.				
-bil	0 H	5	6	8		8	R	8	3	S	10	S.				
Хr	TOF	05,40	10,80	01, 80		38,35	0000	02,80	ID, 30	39,05	12, 85	01.00				
	TO	60	8	8		5	0	8	8	38	8	8				
P4		12	33,	24.		8	80	22	8	32,	13	8		1		
\$9 14	20e	0,52	IOI	110		55	80	120	104	104	062	102				
	TOR	3,65	8	3,25		1,60	8	1.60	0,20	06 0	8	8				
×		1 PH	四	14		肖	23	Ħ	Ħ	Ħ	胃	Ħ				
-	TON	8.3	2,6	6,75		0,40	5,00	0,40	1,80	5, IO	2,05	8.8				
M		4	*T	Nº C			0	3	3			~			-	e 1
X2	No	E	Ē	E.		Ë.	3	123	120	ñ	14 1	126				
X	1	++	н	3		et.	0	C	0	-	6.3	64				
		Hant	33H-	- 271	÷						Holtz	.L.				
	-	CH I	1901	India	ione:						SQUE	GHAI			-	
82		eH38	19-11	0H31	CUT.		191		HILLS I	tu	Fillinge	enal				
HOH		22	,2,5 all	9-7-	OFFO	H.	citra	Hadin	oguo	01.58	自己	1-P		t j		
190		1-4	1-1 57	3	63	34		台	167'	427	C21-1	00				
and a																

Свободный члои уравнения - 3,39141. При этом вклад соответствующих аргументов (параметров N) оказался равным (%): вклад включенных параметров, рассчитанный методом исключения, 5 - 9,1; 6 - 35,9; 3 - 3,8; 10 - 30,9; 4 - 3,1; 7- 2,9; 11 - 13,4; вклад включенных параметров, рассчитанный методом включения, 5 - 15,2; 6 -11,4; 3 - 16..0; 10 -12,6; 4 - 15,9; 7 -15,9; 11 -13,4.

Анализ вклада аргументов в полученную модель активности канцерогенных веществ выявляет существенную роль (метод исключения) коллективизированных электронов радикалов веществ и произведения молекулярной массы радикала на величину (эффект аггравации окислительной ЭТУ активности). Метод исключения во всяком случае подтверждает влияние на канцерогенную активность числа коллективизированных, ло-кализованных электронов скелета, а также величины молеку-лярной массы радикала при приблизительно равном вкладе каждого из аргументов.

Результаты прогнозирования У_{расч} — по данным У_э, а величины $\Delta = y_{9} - y_{pacy}$ приведены в табл.7.2. Является ли расчетная модель У_{расч}, получонная в компьютерном эксперименте, эаконом для имеющейся экспериментальной зависимости \mathbf{y}_{2} и какова вероятность ошибочного отклонения Δ ? Ответ на этот вопрос дают результаты статистического анализа выборки из 30 акоперименталъных данных для веществ (табл.7.2): Критерий Бернштейна-отклонение от 1=0,100. Закон распределения - геометрический. Параметры закона: среднее = 3,100, дисперсия =2,544, аосимвтрия = 3,529, эксцесс = -1,325. Расхождение между эмпирическим и теоретическим рас-пределением носит случайный характер. Вероятность оши-бочного отклонения гипотезы о выбранном законе распре-деления = 0.206. Полученные результаты анализа достоверности построенной У_{расч} модели свидетельствует, что разница величины ∆ случайна и У_{расч}, есть закон для наблюдаемой выборки У_э. При этом У_э может быть рассчитана точно, так как известен закон распределения величин(f). Величина функции распределения f при полученных параметрах закона может быть отнесена в 1 типу кривой Пирсона(как показывают дополнительные расчеты). При этом величина ∆ определяется не стационарной моделью, а кинетикой взаимодействия канцерогена заданной активности с ЖК. Для геометрического распределения это как раз и есть один из диффузионных механизмов, разработанных детально ранее.

Таблица 7.2

Результаты моделирования канцерогенной активности

некоторых веществ

Номер	д ^а .	Fpaoy.		Номер	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Урасч.	2
T	I.000	I,934	0,934	2	I,000	2,219	-I,2I9
3	3.000	2.178	0,822	4	4.000	2,765	I.215
5	0.0	0.348	-0.246	6	0.0	0.833	-0,833
7	0.0	0.993	-0.993	8 .	I.000	I.155	-0.155
9	3.000	2.037	0,963	T .0	2.000	. 0.8I2	I.IE8
II	4.000	2.590	I.4I0	12	2.000	2.325	-0.325
13	2.000	2.144	-0.144	14	2.000	2,043	-0.043
15	2.000	I.884	0.II6	16	0.0	0.130	-0.130
17	I.000	0,866	0.134	18	0.0	-0.262	0.262
19	0.0	-0.546	0.546	20	0.0	-0.604	0.604
SI	0.0	0.686	-0.686	23	0.0	0.9II	-0.9II
23	0.0	-0.988	0.998	24	0.0	0.925	-0.925
25	0.0	-0.026	0.026	26	0.0	0.186	-0.186
27	0.0	-0.250	0.250	28	0.0	0.441	-0.44I
29	0.0	-0.159	D.159	30	0.0	0.353	-0.353

2.Воспользовавшись выборкой для канцеролитов[31], состоящей из 47 карбаматов (пример части численной матрицы для компьютера приведен в табл. 7.3 для соединений с № 25, 29, 33, 37, 41, 45), удалось получить приемлемую модель с номе-рами следующих включенных аргументов, необходимое и дос-таточное число которы, действительн, оказалось равным N= 10:

Параметр	Коэффициент
1	0,00394
26	-0,93786
29	-0.69566
27	-0,85382
25	0,90254
28	-0,64129
6	-0,05044
15	- 0.I7116
22	0,13262
9	0.09275

Степень везде I.

Свободний член уравнения -0,01953.

Тем самым для поддержания инактивности канцерогенеза необходим механизм, лимитируемый в точности десятью необходимыми и достаточными элементарными стадиями химического процесса взаимодействия вещества с ЖК. Максимальная относительная ошибка полученной стационар-ной расчетной модели У_{расч} не превышает 15.8%, а вклад отдельных аргументов, включаемых (исключаемых) в элемен-тарный химический процесс взаимодействия ЖК с канце-ролитом различен.

Вклад включенных параметров, рассчитанный методом исключения (параметр, %): 1 - 13,3; 26 - 18,1; 29 - 12,8; 27 - 9,7; 25 - 10,1; 28 - 8,2; 6 - 7,6; 15 - 6.9; 22 - 7.4; 9 - 7,1.

Вклад включенных параметров, рассчитанный методом включения (параметр, %): 1 - 10,1; 26 - 10,1; 29 - 10,1; 27 - 10,0; 25 - 10,0; 28 - 10.0; 6 - 10,0; 15 - 9,8; 22 - 10.0; 9 - 9.9.

Вклады каждой из N=10 элементарных стадий фактически сравнимы между собой и, следовательно, избирательно равновероятны. Однако каждой из них в механизме взаимодействия отводится своя определенная роль, приводящая к возрастанию антиокислительной активности (АОА). Анализ результатов расчета (y_{pacy}) и экспериментальных величин относительной актианости карбаматов y_9 , приведенной в табл.7., позволяет, во-первых, дискриминировать функцию активности внутри класса ($y \le 0,722$ - канцеролит малоактивен; y > 0,724 - канцеролит активен). Тем самым, уточнив пределы активности карбаматов, сформированные в первоначальной форме (I -активен, 0 - неактивен), а во-вторых, путем анализа статистической. достоверности, найдено: критерий Бернштейна - отклонение от I =0,10, закон распределения - геометрический, параметры закона: среднее = 3.133, дисперсия =13.838, асимметрия =0,930, эксцесс = -0,675.

Расхождение между эмпирическим и теоретическим распределением носит случайный характер. Вероятность ошибочного отклонения гипотезы о выбранном законе распределения в 0.212. Тем самым вероятность безошибочного описания $\Delta = y_3 - y_{\text{пасч}}$ законом с полученными параметрами составляет довольно высокую величину - 0.788. Еоли отдельные стационарные стадии N=10 элементарных процессов, определяемые аргументами модели X₁, X₆, X₉, X₁₅, Х22,Х25, Х26, Х27, Х28, Х29 составляют "механизм заведенных часов", то "нарушителями" активности карбаматов как раз и будут являться те нестационарные стадии процесса, уравнения кинетики, которые, будучи проинтегрированными, и приведут к функции распределения f (reometpuyeckuй закон распределения), определяющей появление в модели величин $\Delta = \mathbf{y}_{\mathfrak{H}} - \mathbf{y}_{\mathsf{pacy}} = \mathbf{y}_{\mathsf{cp}} \cdot \mathbf{f}$,где \mathbf{y}_{cp} -среднее значение относительной активности данного класса соединений из выборки карбаматов.

Таблица 7.3

Пример матрицы данных для канцеролитов карбаматов

# #/n	Кагбамары 0-0-ИІ-2 (С ₆ Н ₅)2С-С=С-Н гло 2 соответ- ствонно	M ^R , X _I	× KEA , X2	N _{nor.} X ₃	M ^R N ^K Kar X4	M ^R N ADE.	X ₆ -X ₂₉
I	2	3	4	5	6	7	8.
I	-CH3	170	52,45	17,55	8916,5	2803,5	Xerial XX994
2	-0 ₂ H5	184	57,65	18,35	10807,6	3376,4	XNN
3	-CH2-CH=CH2	195	69,3	20,20	II720,8	3959,2	
4	-CH2-OECH	194	56,55	2I,45	10970,7	4I,6I,3	X6=2-1 X9=-1-1 X22
5	-CH	196	6I,45	18,55	72044,2	2635,8	
6	-(CH2)2-C6H5	260	78,15	25,85	20319,0	6721,0	Yest in
7	-C ₅ H ₉	284	7I,85	20,15	I6094,4	4513,6	XGSST =1
3	-C ⁶ J ¹³	238	77,05	20,95	I2337,)	1986,I	HAR FI

Э 2 21,75 20727.0 5481.0 Xc=1, 252 82,25 -C7H15 9 22,55 23261,7 5998,3 IO -C8H17 266 87,45 Прлмечание. В Значение сотальных X; равно нуло, для 1 = 7+29. Условние обозначения и значения параметров XI + X5 нак в табляце 17. Остальние значения параметров X: $x_6 - H$, $x_7 - -CH_3$, $x_8 - -C_2H_5$, $x_9 - -C_6H_5$, $x_{10} - -CH_2$ -CH=CH₂, $x_{11} - -CH_2$ -CE=CH, $x_{12} - -CH \leq CH_2$, $x_{13} - -CH_2CH_2C_6H_5$, $x_{16} - -C_7H_{15}$, X17 - -C8H17, X18 - -(CH2)3N(CH3)2, X19 - -C6H4CI, X20 - -C6H4Br,

Таблица 7.4

Результата расчета (У_{расч}) канцеролитической активности карбаматов (У_{расч}≤ 0,722 - канцеролит малоактивен; У_{расч} >0,724 - канцеролит активен)

Romer	л ^э	ypaog.	4	Номар	λ ⁵	Урасч.	۵
T	2	3	4	5	6	7	. 8
I	T.000	0.784	0.216	2	1.000	0.840	0.160
3	I.000	0.679	0.121	4	1.000	0.887	0.113
5	I.000	I.139	-0.139	6	-I.000	0.88I	0.119
7	I.000	I.TO7	-0.107	8	I.000	· 1,162	-0.162
9	T.000	I.166	-0.166	DI	I.000	0.724	0.276
II	L.000	0.890	0.110	12	I.000	0.932	0.068
13	7.000	0.926	0.074	14	T.000	0.935	0.065
15	I.000	0.87I	0.129	16	I.000	0.976	0.024
17	T.000	0.897	0.103	18	I.000	I.099	-0.099
TO	T.000	I.109	-0.108	20	I.000	0.790	0.210
21	T.000	0.992	0.008	22	I.000	1.001	-0.001
23	T.000	0.900	0.100	24	I.000	I.III	-0.III

РЕКОМЕНДУЕМАЯ РЕТРОСПЕКТИВА ЛИТЕРАТУРЫ

A 1 I i s о п А. С., Т и г п е г W a r w i c k R. T., Quantitative Observations on the Olfactory System of the Rabbit, *Brain*, 72, 186—197, 1949.

A m o o r e J. E., Stereochemical Theory of Olfaction, *Nature*, **198**, 271–272, 1963.

A m o o r e J. E., The Stereochemical Theory ofOlfaction, 1. Identification of the Seven Primary Odours, *Proc. Sci. Sect., Toilet* Goods *Asm.*, Special Supplement to \mathbb{N} 37, pp. 1–12, 1962.

A m o o r e J. E., The Stereochemical Theory oS Olfaction. 2. Elucidation of the Stereochemical Properties of the Olfactory Receptor Sites, *Proc. Sci. Sect., Toilet Goods Assn.,* Special Supplement to M; 37, pp. 13–23, 1962.

Amoore J. E., Stereocheniica! Specificities of Human Olfactory Receptors, *Perf. Essent. Oil Record*, 43, 321–323, 330, 1952.

B a r a d i A. F., B o u r n e G. H., Localization of Gustatory and Olfactory Enzymes in the Rabbit and the Problems of Taste and Smell, *Nature*, **168**, 977–979, 1951.

B e e t s M. G. J., Odour and Molecular Constitution, Am. Perfumer and Aromatics, **76**, \mathbb{N} ⁰ 6, 54-63, 1961.

B e c k L. H., M i 1 e s W. R., Infrared Absorption in Field Studies of Oifaction in Honeybees, *Proc. Nat. Acad. Sci.*, 3S. 292–310, 1949.

B r i g g s M. H., D u n c a n R. B., Odour Receptors, *Nature*, **191**, 1310—1311, 1961.

Buijs K., Schutte C. J. H., Verster P., Absence of Correlation Between Odour and Molecular Vibration, *Nature*, **192**, 751–752, 1961.

Briggs M. H., Duncan R. B., Pigment and the Olfactory Mechanism, *Nature*, 195, 1313–1314, 1962.

Beck L. H., M i 1 e s W. R., Some Theoretical and Experimental Relationships Between Infrared Absorption and Oifaction, *Science.* **106**, 511, 1947.

Bloom G., Studies on the Olfactory Epithelium of the Prog and the Toad with the Aid of Light and Electron Microscopy, Z. f, Zeilforschung, 41, 89-100, 1954.

by Homologous Alcohols, *J. Gen. Physiol.*, **35**, 823–839, 1952. Compt. rend. Soc. Biol., **143**, 922–923, 1949.

СгоскегЕ. С., НепdегsопL. F,, Analysis and Classification of Odours, Am. Perfumer and Essent. Oil. Rw., 22, 325—327,356, 1927.

D a d i e u A., Studies in the Raman Effect. XI. Raman Spectra of Organic Substances (Cyanogen Compounds). *Monatsch.*, 57, 437–468, 1931.

D a v i e s J. Γ ., T a y 1 o r F. H., The Role of Adsorption and Molecular Morphology in Olfactton: the Calculation of Olfactory Thresholds, *Biol. Bull.*, **117**, 222-238, 1959.

D e t h i e r V. G., Y o s t M. T., Olfactory Stimulation of Blowflies 68, 117–123, 1955. 831, 1954.

D y s o n G. M., The Raman Effect and the Concept of Odour, *Perfum. and Essen. Oil Record*, 28, 13–19, 1937.

D y s o n G. M., The Scientific Basis of Odour, *Chem. and Ind.*, London, **16**, 647–651, 1938.

Feher F., LaneW., WinkhausG. (The Chemistry of Sul-fur. **XXX.** Preparation of Sulphanes: H_2S_2 , H_2S_3 , H_2S_4 , and H_2S_5 .) J. anorg. u. allgem., 288, 113–122, 1956.

Fragrance in Verbena Flowers, Science, 48, 298–299, 1918. Cheesman G. H., Townsend M. J., Further Experiments on the Olfactory Thresholds of Pure Chemical Substances, Using the Sniff Bottle Method, *Quart. J. Exptl. Psychol.*, 8, 8–14, 1956.

G ass er H. S., Olfactory Nerve Fibres, J. Gen. Physiol., 39, 473–496, 1956.

G e r e b t z o f f M. A., P h i 1 i p p o t E. (Lipids and Olfactory Pigment.) *Acta Oto-Rhlrw-Laryngolica Belgica*, **11**, 297–300, 1957.

GreenJ. H. S., KynastonW., GebbieH. A., Far Infrared Spectroscopy of Benzene Derivatives by Interferometry, *Nature*, 195, 595 596, 1962.

GreenJ. H. S., KynastonW., LindseyA. S., Vibrational Spectra of Benzene Derivatives. I. Nitrobenzene..., *Spectrochim. Acta*, 17, 486–502, 1961.

G u i 1 1 o t M. (Physiology of the Senses. Partial Anosmia and Funda-mental Odours.) *Compt. rend. Acad.Sci.*, Paris. **228**, 1307–1309, 1948.

G u i I 1 o t M. (Some Characteristics of the Phenomenon of Partial Anosmia.) C. r., Sw. Biol.. Paris, **142**, 161–162. 1948.

Green J. H. S., Vibrational Spectra of Benzene Derivatives. II. Assignment and Calculated Thermodynamic Functions for Benzonitrile. *Spectrochim. Acta*, **17**, 607–613, 1961.

Green J.H.S.,Kynaston W., P a i s 1 e y H. M., Vibrational Spectra of Monosubstituted Pyridines. *Spectrochim. Acta.* **19**, 549–564, 1963.

H a i n e r R. M., Emslie A.G., Jacobson A., An Information Theory of Olfaction, Ann.N. Y., Acad. Sci., 58, Art, 2, 158-174,1954.

H e n n i n g H. (Smell; a Handbook for the Spheres of Psychology, Physiology, Zoology, Botany, Chemistry, Physics, Neurology, Ethnology, Language, Literature, Aesthetics, and History), 2nd ed., 434 pp., Leipzig, 1924.

H e u s g h em C., G c r e b t z o f I M. A. (Concordant Results of uiochemicai and Histochemical Examination oi Lipids oi the Olfactory Mucosa.) *Compi. rend. Soc. Blol.*, **147**, 540–541, 1953.

Herzberg G. Molecular Spectra and Molecular Structure, /I. Infrared and Roman Spectra of Polyatomic Molecules. Van Nostrand, New York, 1945.

J o h n s i o π J, W,, Infrared Loss Theory of Olfaction Untenabie, Phys. *Zool*, 26, No 3, 266–273, 1953.

J o n e s F. N., J o n e s M. H., Modern Theories of Oifaction: A Critical Review, J. *Psychol.*, **36**, 207–241, 1953.J. Exptl.

Psychol., 12, 99—109, 1960. Neuhaus W. (Odour Thresholds of DogsJor lonone and Ethyl Mercaptan and their Reiation to Other Odour Thresholds of Dog and Man.) *Z. Naturforsch.*. Ob, 560-567, 1954.

Johnston J. W., P a r k s A. B., Odour Intensity and the Stereochemical Theory of Oifaction, *Prw. Set. Sect.*, *Toilet Goods Assn.*, N° 34, 4–7, 1960.

Johnston J. W., S a n d o v a i A., The Stereochemical Theory of Olfaction. 4, The Validity of Muskiness as a Primary Odour, *Prw. Scl. Sect., Toilet Ooods Assn.,* Special Supplement to № 37, 34-45, 1962.

Jones F. N., Olfactory Thresholds in the International Critical

Jotinston J. W., S a n d o v a 1 A., OrganolepUc Quality and the Stereochemical Theory of Olfaction, *Proc. Sci. Sect., Toilet Goods Assn.*, 33, 3–9, 1960.

KirkR.L., StenhouseN.S., Ability to Smell Solutions of

KrugerL., FeldzamenA. N., Miles'W. R., Comparative

L e G r o s C i a r k W. E., Inquiries into the Anatomical Casis of Olfactory Discrimination, *Proc. Roy.Soc.*, *Set.* B, **146**, 299–319, 1957.

Le Magnen J. (Analysis of Complex and Homologous Odours by Fatigue.) *Compt. rend., Acad. Sci.*, Paris, 226, 753–754, 1948.

LeMagnen J., Rapaport A. (The Role of Vitamin A in the Mechanism of Olfaction in the White Rat.) *Compt. rend. Soc. Blol.*, **145**, 800–803, 1951.

LeMagnenJ. (Study of a Pyhenomenon of Olfactory Sensitization.)Compt. rend. Acad. Sci. Paris. 228, 122–124, 1949.

LeOros ClarkW.E., Observations on the Structure and Organization of Olfactory Receptors in the Rabbit, *Yale J. Biol. and Med.*, **29**, 83–95, 1956.

M u 1 1 i n s L. J., Olfaction, Ann. New York Acad. Scl., **62**, 249-276, 1955.

92

M o u 1 t o n D. 0., E a y r s J. T., Studies in Olfactory Acuity, 11.

M o u i t o n D. G., Pigment and the Olfactory Mechanism, *Nature*, 195, p.1312—1313, 1962.

M c Co a m b 1 e E. A., The Applicability of Weber's Law to Smell, *Am*, *J. Psychol.*, **10**, 82–142, 1898.

Measuring Supra-Threshold Olfactory Intensity, Am. J. Psychot.,

Meyer J. (The Odour of Hydrocyanic Acid.), *Gasmaske*, 7, 112, 1935.

Moncrieff R. W. *The Chemical Senses*. John Wiley, New York, 2nd Edition, 195).

Neuhaus W. (Variation of the Olfactory Aueteness of the Dog by Oral Administration of Odouriferous Substances.) Z. Vergl.Physiol., **41**, 221–241, 1958.

Olfactory Intensities of the Aliphatic Alcohols in Man, Am. J.

Onagawa K. (On the Relationship Between the Grade of Colour at the Olfactory Mucous Membrane and the Sensibility of Olfactory Stimulation.) *J. Physiol. Soc. Japan*, **19**, 189–193, 1957.

Ottoson D., Some Aspects of the Function of the Olfactory System, *Pharmacological Reviews*, **15**, 1–42, 1963.

P h i 1 l i p o t E., G e r e b t z o i f M. A. (First Results of the Analysis of the Olfactive Pigment.) /. *Physiol.* (Paris), **50**, 451–452, 1958.

P i e r c e J. R., Symbols, Signals and Noise; the Nature and Process of Communication. Harper & Bros., New York, 1961.

Potassium Cyanide, Nature, 171, 698–699, 1953.

Psychot., 68, 386–395, 1955.

Q u i l i o t M., F i e h r e r A. (Follicuiin and Olfactory Sensation.)

R u b i n M., Apotheker D., L u t m e r R., TheStereochernical Theory of Oifaction. 3. Structure and Odour: 1,4-cyclohexane Lactones and Related Compounds, *Proc. Sci. Sect., Toilet Goods Assn.*. Special Supplement to N_{2} 37, 24–33, 1962.

R u s h t o n W. A. H., Peripheral Coding in the Nervous System, in Sensory Communication, A Symposium, W. A. Rosenblith, Editor. M. 1. 1. Press, Wiley, New York, 1961, pp. 169-181.

R u s h t o n W. A. H., Peripheral Coding in the Nervous System, in Sensory Communications, A. Symposium. W. A. Rosenblith, Editor, M. L T. Press, Wiley, New York, 1961, pp. 169-181.

Relative Detectability of n-Aliphatic Alcohols by the Rat, Quart.

S i e v s n s S. S., The Psychophysics of Sensory Function, in Sensory Communication, A Symposium. W. A. Rosenblith, Editor. M. I. T. Press, Wiley, New York, 1961, pp. 1–33.

Tables, Science, **118**, 333, 1953.

T h o m p s o n H. W;, Some Comments on Theories of Smell, in »Molecular Structure and Organoieptic Quality», S. C. I. Monograph No 1, Society of Chemical Industry, London. 1957, 103— 115,

TгоlandL.T. *The Principles of Psychophysiology*, voi. 2, Van Nostrand, New York, 1930.

W r i g h t R. H., Odour and Molecular Vibration, in «Molecular Structure and Organoleptic Quality». S. C. I. Monograph N_{2} 1, Society of Chemical Industry, London, 1957, 91–102.

W r i g h t R. H., Odour and Molecular Vibration, *Nature*, **190**, 1101-1102, 1961.

Wright R. H., Odour and Chemical Constitution. Nature, 173.

Wright R. H., Molecular Vibration and Insect Sex Attractants, *Nature*, **198**, 455–459, 1963.

W r i g h t R. H., Odour and Molecular Vibration. I. Quantum and

W Γ i g h t R. H., S e r e n i u s R. S. E-. Odour and Molecular Vib-ration. II. Raman Spectra of Substances with the Nitrobenzene Odour, J. *Appl. Chem.*, 4, 615–621, 1954.

W r i g ht R. H., R e i d C., E v a n s H. G. V., Odour and Molecular Vibration. III. A New Theory of Olfactory Stimulation, *Chemistry and Industry*, 1956, № 37, 973—977.

94

Winter M- (Odour and Constitution. XIX. Homologues and Analogues of 1-p-hydroxyphenyl-3-butanone, ketoneof the raspberry.) *Helv. Chim. Acfa*, 44, \mathbb{N} 7, 2110–2121, 1961.

Zwaardemaker H., Odouriferous Materials, In International. Critical Tables, 1, 358–361, 1926, McGraw-Hill.

ZwaardemakerH. (The Physiology of Srnell.) Barth, Leipzig, 1924.

Бергельсон Л. Д. Биологические мембраны.— М.: Наука, 1975.

Блюменфельд Л. А. Проблемы биологической физики.— М.: Наука, 1977.

Веренинов А. А. Транспорт ионов через клеточные мембраны.—Л.: Наука».1978.

Волькенштейн М. В. Общая биофизика.— М.: Наука, 1978.— Гл. 1, 2, 3.

Волькенштейн М. В. Энтропия и информация, — М.: Наука, 1986.

Глансдорф П., Пригожин И. Термодинамическая теория структуры, стабильности и флуктуации.— М.: Мир, 1973.

Бриллюэн Л. Наука и теория информации.— М.; Физматгиа, 1960. Котык А., Яначек К. Мембранный транспорт.— М.: Мир, 1980.

Маркин В. С., Чиамаджев Ю. А. Индуцированный ионный транспорт. М.:Наука, 1974

Овчинников Ю. А., Шкроб А. М., Иванов В. Т. Мембрано-активные комплексоны.— М.: Наука, 1974.

Поликар А. Молекулярная цитология мембранных систем живой клетки.—М.: Мир, 1972. Биологические мембраны: Сб. статей/Под ред. Д. С. Парсонса.— М.: Атомиздат, 1978.

Пригожин И. Введение в термодинамику необратимых процессов.— М.: ИИЛ, 1960.

Рубин А. Б. Термодинамика биологических процессов.— М.: Изд. МГУ, 1976.

Хакен Х. Синергетика. — М.: Мир, 1980.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
От автора	5
Молекулярная рецепция, законы биологической	6-19
кине-матики и распространение одорантов	
1. Молекулярная рецепция одорантов	
2.Векторно - броуновская кинематика живых орга-	
низмов, кинетика одорантов и механизм рецепции	
Компьютерные модели молекулярной рецепции и	20-36
классификации одорантов	
1.Компьютерная модель среды обоняния	
2.Компьютерное моделирование свойств одорантов	
Компьютерное моделирование анальгезирующей спо-	37-43
собности веществ ряда петидина как функции	
состава и электронного строения функциональных	
групп	
Компьютерная модель функциональной способности	44-54
веществ ряда фенетидина проявлять анальгезирую-	
щие, жаропонижающие и токсичные свойства в зави-	
симости от состава и строения функциональных	
групп	
Компьютерное моделирование физико-органической	55-59
природы действия снотворных и седативных средств	
Физико - органическая модель и статистическая	60-67
достоверность функционального синэргизма	
действия душистых веществ и анальгезирующих,	
седативных средств	
Физико - химические, компьютерные модели расчета	68-87
канцерогенов, канцеролитов и синэргизм явления	
РЕКОМЕНДУЕМАЯ РЕТРОСПЕКТИВА ЛИТЕРАТУРЫ	89-96

КУТОЛИН СЕРГЕЙ АЛЕКСЕЕВИЧ

ФИЗИКО-ОРГАНИЧЕСКАЯ ХИМИЯ -КОМПЬЮТЕРНЫЙ СИНЭРГИЗМ (одоранты, лекарственные вещества, канцерогены, канцеролиты)

Печатается в соответствии с Уставом Академии (п.2.5), утвержденным Советом Экспертов 15 июля 1996 г.

Is printed according to the Charter of Academy (item 2.5), By authorized Advice of the Experts 15 Juli 1996 Y.

ИБ № 191

Гарнитура Times.Формат 60х84 1/16 5 печ.л., 6 уч.изд.л. Заказ 987. Тираж 1100 экз. Цена договорная

Издательство Chem.Lab.NCD 630111, Новосибирск-111, а/ я-325. ИБ № 11879